Kathleen Matthews (biochemist)

Last updated
Kathleen Matthews, 1998 KathleenMatthews.jpg
Kathleen Matthews, 1998

Kathleen Matthews is an American biochemist specializing in DNA/protein interactions, specifically related to the lac repressor. She is the Stewart Memorial Professor Emerita of BioSciences at Rice University.

Contents

Career

Kathleen ("Kathy") Shive Matthews is Stewart Memorial Professor Emerita in BioSciences at Rice University and a founding member of the Biochemistry department, which later merged to become the BioSciences department. [1] She received a B.S. in chemistry from the University of Texas at Austin in 1966 and went on to obtain her PhD in biochemistry from the University of California, Berkeley in 1970. [2] After working as a postdoctoral fellow at Stanford university, she joined the faculty at Rice as an Assistant Professor in Biochemistry at its inception in 1972. Later, she became department chair of the Department of Biochemistry from 1987 to 1995, and between 1998 and 2009 was the Dean of the Wiess School of Natural Sciences. [2] [3] As Dean, Matthews was co-principal investigator on a National Science Foundation ADVANCE grant aimed at recruiting and developing the careers of women in academia in the fields of science and engineering. [4]

Research

Matthews' research focused on the interactions of protein and DNA, in particular lac repressor and the Hox gene protein Ultrabithorax. [2] Matthews built upon that of other biochemists, including Temple F. Smith and John "Jack" Sadler, and investigated how cysteine thiol groups within the lac repressor core directly interacted with the lac operon, initially proposing that the four core regions in each of the homotetramer lac repressor protein were all required for binding with the lac operon in 1980. [5] Later, Matthews investigated how specific subunits of the lac repressor interact with one another and consequently affect the functioning of the repressor. [6] She has written over 170 papers during her career, which lasted over 50 years. [3]

Awards

In 1996 she was elected a fellow of the American Association for the Advancement of Science. [7] In 2010, Matthews was honored as a Women in Science with Excellence honoree for her role in the Biochemistry department at Rice. [8] She received the William C. Rose Award in 2015 for her work in DNA-binding proteins and her commitment to mentoring young scientists. [7]

Selected publications

Related Research Articles

β-Galactosidase Family of glycoside hydrolase enzymes

β-Galactosidase is a glycoside hydrolase enzyme that catalyzes hydrolysis of terminal non-reducing β-D-galactose residues in β-D-galactosides.

In genetics, an operon is a functioning unit of DNA containing a cluster of genes under the control of a single promoter. The genes are transcribed together into an mRNA strand and either translated together in the cytoplasm, or undergo splicing to create monocistronic mRNAs that are translated separately, i.e. several strands of mRNA that each encode a single gene product. The result of this is that the genes contained in the operon are either expressed together or not at all. Several genes must be co-transcribed to define an operon.

<span class="mw-page-title-main">François Jacob</span> French biologist

François Jacob was a French biologist who, together with Jacques Monod, originated the idea that control of enzyme levels in all cells occurs through regulation of transcription. He shared the 1965 Nobel Prize in Medicine with Jacques Monod and André Lwoff.

<span class="mw-page-title-main">Lac repressor</span> DNA-binding protein

The lac repressor (LacI) is a DNA-binding protein that inhibits the expression of genes coding for proteins involved in the metabolism of lactose in bacteria. These genes are repressed when lactose is not available to the cell, ensuring that the bacterium only invests energy in the production of machinery necessary for uptake and utilization of lactose when lactose is present. When lactose becomes available, it is firstly converted into allolactose by β-Galactosidase (lacZ) in bacteria. The DNA binding ability of lac repressor bound with allolactose is inhibited due to allosteric regulation, thereby genes coding for proteins involved in lactose uptake and utilization can be expressed.

<i>lac</i> operon Set genes encoding proteins and enzymes for lactose metabolism

The lactose operon is an operon required for the transport and metabolism of lactose in E. coli and many other enteric bacteria. Although glucose is the preferred carbon source for most enteric bacteria, the lac operon allows for the effective digestion of lactose when glucose is not available through the activity of beta-galactosidase. Gene regulation of the lac operon was the first genetic regulatory mechanism to be understood clearly, so it has become a foremost example of prokaryotic gene regulation. It is often discussed in introductory molecular and cellular biology classes for this reason. This lactose metabolism system was used by François Jacob and Jacques Monod to determine how a biological cell knows which enzyme to synthesize. Their work on the lac operon won them the Nobel Prize in Physiology in 1965.

<span class="mw-page-title-main">Jacques Monod</span> French biologist

Jacques Lucien Monod was a French biochemist who won the Nobel Prize in Physiology or Medicine in 1965, sharing it with François Jacob and André Lwoff "for their discoveries concerning genetic control of enzyme and virus synthesis".

<span class="mw-page-title-main">SOS response</span> Biological process

The SOS response is a global response to DNA damage in which the cell cycle is arrested and DNA repair and mutagenesis are induced. The system involves the RecA protein. The RecA protein, stimulated by single-stranded DNA, is involved in the inactivation of the repressor (LexA) of SOS response genes thereby inducing the response. It is an error-prone repair system that contributes significantly to DNA changes observed in a wide range of species.

<span class="mw-page-title-main">Helix-turn-helix</span> Structural motif capable of binding DNA

Helix-turn-helix is a DNA-binding domain (DBD). The helix-turn-helix (HTH) is a major structural motif capable of binding DNA. Each monomer incorporates two α helices, joined by a short strand of amino acids, that bind to the major groove of DNA. The HTH motif occurs in many proteins that regulate gene expression. It should not be confused with the helix–loop–helix motif.

<span class="mw-page-title-main">Repressor</span> Sort of RNA-binding protein in molecular genetics

In molecular genetics, a repressor is a DNA- or RNA-binding protein that inhibits the expression of one or more genes by binding to the operator or associated silencers. A DNA-binding repressor blocks the attachment of RNA polymerase to the promoter, thus preventing transcription of the genes into messenger RNA. An RNA-binding repressor binds to the mRNA and prevents translation of the mRNA into protein. This blocking or reducing of expression is called repression.

Hox genes, a subset of homeobox genes, are a group of related genes that specify regions of the body plan of an embryo along the head-tail axis of animals. Hox proteins encode and specify the characteristics of 'position', ensuring that the correct structures form in the correct places of the body. For example, Hox genes in insects specify which appendages form on a segment, and Hox genes in vertebrates specify the types and shape of vertebrae that will form. In segmented animals, Hox proteins thus confer segmental or positional identity, but do not form the actual segments themselves.

<span class="mw-page-title-main">Catabolite activator protein</span> Trans-acting transcriptional activator

Catabolite activator protein is a trans-acting transcriptional activator that exists as a homodimer in solution. Each subunit of CAP is composed of a ligand-binding domain at the N-terminus and a DNA-binding domain at the C-terminus. Two cAMP molecules bind dimeric CAP with negative cooperativity. Cyclic AMP functions as an allosteric effector by increasing CAP's affinity for DNA. CAP binds a DNA region upstream from the DNA binding site of RNA Polymerase. CAP activates transcription through protein-protein interactions with the α-subunit of RNA Polymerase. This protein-protein interaction is responsible for (i) catalyzing the formation of the RNAP-promoter closed complex; and (ii) isomerization of the RNAP-promoter complex to the open conformation. CAP's interaction with RNA polymerase causes bending of the DNA near the transcription start site, thus effectively catalyzing the transcription initiation process. CAP's name is derived from its ability to affect transcription of genes involved in many catabolic pathways. For example, when the amount of glucose transported into the cell is low, a cascade of events results in the increase of cytosolic cAMP levels. This increase in cAMP levels is sensed by CAP, which goes on to activate the transcription of many other catabolic genes.

<span class="mw-page-title-main">Silencer (genetics)</span> Type of DNA sequence

In genetics, a silencer is a DNA sequence capable of binding transcription regulation factors, called repressors. DNA contains genes and provides the template to produce messenger RNA (mRNA). That mRNA is then translated into proteins. When a repressor protein binds to the silencer region of DNA, RNA polymerase is prevented from transcribing the DNA sequence into RNA. With transcription blocked, the translation of RNA into proteins is impossible. Thus, silencers prevent genes from being expressed as proteins.

<span class="mw-page-title-main">Regulator gene</span> Gene involved in controlling expression of other genes

In genetics, a regulator gene, regulator, or regulatory gene is a gene involved in controlling the expression of one or more other genes. Regulatory sequences, which encode regulatory genes, are often at the five prime end (5') to the start site of transcription of the gene they regulate. In addition, these sequences can also be found at the three prime end (3') to the transcription start site. In both cases, whether the regulatory sequence occurs before (5') or after (3') the gene it regulates, the sequence is often many kilobases away from the transcription start site. A regulator gene may encode a protein, or it may work at the level of RNA, as in the case of genes encoding microRNAs. An example of a regulator gene is a gene that codes for a repressor protein that inhibits the activity of an operator.

In molecular biology, an inducer is a molecule that regulates gene expression. An inducer functions in two ways; namely:

Gene structure is the organisation of specialised sequence elements within a gene. Genes contain most of the information necessary for living cells to survive and reproduce. In most organisms, genes are made of DNA, where the particular DNA sequence determines the function of the gene. A gene is transcribed (copied) from DNA into RNA, which can either be non-coding (ncRNA) with a direct function, or an intermediate messenger (mRNA) that is then translated into protein. Each of these steps is controlled by specific sequence elements, or regions, within the gene. Every gene, therefore, requires multiple sequence elements to be functional. This includes the sequence that actually encodes the functional protein or ncRNA, as well as multiple regulatory sequence regions. These regions may be as short as a few base pairs, up to many thousands of base pairs long.

<span class="mw-page-title-main">Ultrabithorax</span> Protein-coding gene found in Drosophila melanogaster

Ultrabithorax (Ubx) is a homeobox gene found in insects, and is used in the regulation of patterning in morphogenesis. There are many possible products of this gene, which function as transcription factors. Ubx is used in the specification of serially homologous structures, and is used at many levels of developmental hierarchies. In Drosophila melanogaster it is expressed in the third thoracic (T3) and first abdominal (A1) segments and represses wing formation. The Ubx gene regulates the decisions regarding the number of wings and legs the adult flies will have. The developmental role of the Ubx gene is determined by the splicing of its product, which takes place after translation of the gene. The specific splice factors of a particular cell allow the specific regulation of the developmental fate of that cell, by making different splice variants of transcription factors. In D. melanogaster, at least six different isoforms of Ubx exist.

The L-arabinose operon, also called the ara or araBAD operon, is an operon required for the breakdown of the five-carbon sugar L-arabinose in Escherichia coli. The L-arabinose operon contains three structural genes: araB, araA, araD, which encode for three metabolic enzymes that are required for the metabolism of L-arabinose. AraB (ribulokinase), AraA, and AraD produced by these genes catalyse conversion of L-arabinose to an intermediate of the pentose phosphate pathway, D-xylulose-5-phosphate.

The gal operon is a prokaryotic operon, which encodes enzymes necessary for galactose metabolism. Repression of gene expression for this operon works via binding of repressor molecules to two operators. These repressors dimerize, creating a loop in the DNA. The loop as well as hindrance from the external operator prevent RNA polymerase from binding to the promoter, and thus prevent transcription. Additionally, since the metabolism of galactose in the cell is involved in both anabolic and catabolic pathways, a novel regulatory system using two promoters for differential repression has been identified and characterized within the context of the gal operon.

<span class="mw-page-title-main">Catabolite Control Protein A</span>

Catabolite Control Protein A (CcpA) is a master regulator of carbon metabolism in gram-positive bacteria. It is a member of the LacI/GalR transcription regulator family. In contrast to most LacI/GalR proteins, CcpA is allosterically regulated principally by a protein-protein interaction, rather than a protein-small molecule interaction. CcpA interacts with the phosphorylated form of Hpr and Crh, which is formed when high concentrations of glucose or fructose-1,6-bisphosphate are present in the cell. Interaction of Hpr or Crh modulates the DNA sequence specificity of CcpA, allowing it to bind operator DNA to modulate transcription. Small molecules glucose-6-phosphate and fructose-1,6-bisphosphate are also known allosteric effectors, fine-tuning CcpA function.

<span class="mw-page-title-main">Fuzzy complex</span>

Fuzzy complexes are protein complexes, where structural ambiguity or multiplicity exists and is required for biological function. Alteration, truncation or removal of conformationally ambiguous regions impacts the activity of the corresponding complex. Fuzzy complexes are generally formed by intrinsically disordered proteins. Structural multiplicity usually underlies functional multiplicity of protein complexes following a fuzzy logic. Distinct binding modes of the nucleosome are also regarded as a special case of fuzziness.

References

  1. "History of Biochemistry & Cell Biology at Rice". Rice University. Archived from the original on 21 October 2017. Retrieved 27 April 2017.
  2. 1 2 3 "Kathleen Matthews: Rice University Department of BioSciences". Rice University. Archived from the original on 31 May 2018. Retrieved 27 April 2017.
  3. 1 2 Passwaters, Arie. "Matthews, Wise to receive ARA's Gold Medal at 2023 Laureates Awards". Rice University News. Retrieved 7 May 2023.
  4. Roach, Ronald (15 November 2006). "Rice University Tapped To Develop Initiatives for Women In Science and Engineering". Diverse Issues in Higher Education. Retrieved 7 May 2023.
  5. Müller-Hill, Benno (May 12, 2011). The Lac Operon A Short History of a Genetic Paradigm. De Gruyter. pp. 99–101. ISBN   9783110879476 . Retrieved 7 May 2023.
  6. Perspectives on Fluorescence: A Tribute to Gregorio Weber. Springer International Publishing. 2016. p. 237. ISBN   9783319413280.
  7. 1 2 Meier, Elizabeth (March 2015). "Matthews recognized for 'the very strong example she sets'". ASBMB Today. American Society for Biochemistry and Molecular Biology.
  8. "Kathleen Matthews, Ph.D." Women in Science with Excellence (WISE) - Texas. Archived from the original on 4 July 2016. Retrieved 27 April 2017.