Land lab

Last updated
An educational land lab with pollinators gardens, bird houses, and vegetable garden space within an urban setting. Land Lab Urban Garden.jpg
An educational land lab with pollinators gardens, bird houses, and vegetable garden space within an urban setting.

A land lab is an area of land that has been set aside for use in biological studies. Thus, it is literally an outdoor laboratory based on an area of land.

Contents

Studies may be elementary or advanced. For instance, students may simply be given the task of identifying all the tree species in a land lab, or an advanced student may be doing an intensive survey of the microbial life forms found in a soil sample.

Hands on, tangible, project-base learning is a key aspect of land labs within an educational context. Land labs can exist anywhere with outdoor access: educational campuses, residential neighborhoods, peri-urban settings, urban settings, or even a small courtyard. The driving principle behind land lab education is getting outside and interacting with the world directly.

Land labs are often marked out in plots or transects for studies. A plot may be any size, usually marked out in square meters. This allows for more intensive, delimited studies of changes and inventories of biota. Transects are straight lines at which, at intervals, measurements are taken for a profile of the ecological community.

Grow bags provide a flexible and mobile gardening environment for land labs.  Chard and kale are growing in these grow bags. Vegetable in Grow Bags.jpg
Grow bags provide a flexible and mobile gardening environment for land labs.  Chard and kale are growing in these grow bags.

Land labs serve an important role in giving students access to a natural environment to observe native plants and wildlife, apply STEM concepts with hands on projects, and build a better understanding of how critical biodiversity is for ecological health.

Common educational projects conducted at a land lab often include

Studying humans needs and sustainability in land labs

Compost rollers are used to cleanly produce rich, organic compost for sustainable gardens.  Food waste, veggie scraps, grass clippings, cardboard, biochar, leaves and other biomass are mixed together.  These inputs have varying levels of carbon and nitrogen which are required for producing compost.  Microbes and insects break down these inputs into a rich soil amendment to help fertilize plants sustainably. Compost Rollers.jpg
Compost rollers are used to cleanly produce rich, organic compost for sustainable gardens.  Food waste, veggie scraps, grass clippings, cardboard, biochar, leaves and other biomass are mixed together.  These inputs have varying levels of carbon and nitrogen which are required for producing compost.  Microbes and insects break down these inputs into a rich soil amendment to help fertilize plants sustainably.

Learning to produce food, fiber and energy in sustainable ways is a tremendous opportunity for students of all ages within land labs. Students can explore biomass energy, biogas fuels, solar energy, permaculture, composting, organic gardening, and many other facets of sustainability through land labs.

By designing systems that mimic natural processes (biomimicry), we are able to produce food, fiber, and energy in more sustainable ways for local communities. Numerous environmental and economic benefits exist to growing food locally and producing energy locally. These biomimicry inspired systems are circular in nature. Nothing is wasted, as the outputs of one circular system become the inputs of another.

Circular systems in land labs

Circular system experiments, promoting a circular economy, are a natural fit for educational land labs. Circular systems function by ensuring that nothing is wasted. Every output of a system becomes an input for another system.

For example: Food scraps feed chickens, chicken manure fertilizes the garden, the garden grows more vegetables, food scraps are then available from the vegetables to feed chickens.

A methane digester intakes food waste, water, manure and other biomass. Methanogens in the water then consume nutrients in the organic slurry, and methane gas is released. The methane gas is captured, stored and pressurized, and then is used to power a gas stove for cooking. Liquid fertilizer is produced as a byproduct of this process. This is a fantastic example of sustainable, local energy. Methane Biogas Generator.jpg
A methane digester intakes food waste, water, manure and other biomass. Methanogens in the water then consume nutrients in the organic slurry, and methane gas is released. The methane gas is captured, stored and pressurized, and then is used to power a gas stove for cooking. Liquid fertilizer is produced as a byproduct of this process. This is a fantastic example of sustainable, local energy.

Circular systems that are well-suited for land labs include:

Multi-disciplinary environment within land labs

Land labs help to form an ecosystem well suited for long-term project-based learning. Students, teachers, and community members can participate in multi-disciplinary activities ranging from land restoration, animal husbandry, gardening, weather analysis to outdoor art studies.

Photovoltaic solar panels provide clean electricity for this land lab.  Using local power to operate garden tools, sensors, cameras, and water pumps provides a great example of sustainable energy for students. Photovoltaic Solar Panel.jpg
Photovoltaic solar panels provide clean electricity for this land lab.  Using local power to operate garden tools, sensors, cameras, and water pumps provides a great example of sustainable energy for students.

The multi-disciplinary context within a land lab is perfect for cross-curricular education. The following disciplines and subjects can all tie into land lab activities in an integrated fashion:

Goals and outcomes of land lab education experiences

Black soldier fly larvae (BSF) as raised in this container.  As they mature the grubs climb up and fall into the harvest bucket.  BSF are a protein and fat rich food source for chickens, fish and wild birds.  BSF can be fed coffee grounds, food scraps / waste, and even manure.  BSF are a sustainable insect feedstock. Black Soldier Fly Larvae.jpg
Black soldier fly larvae (BSF) as raised in this container.  As they mature the grubs climb up and fall into the harvest bucket.  BSF are a protein and fat rich food source for chickens, fish and wild birds.  BSF can be fed coffee grounds, food scraps / waste, and even manure.  BSF are a sustainable insect feedstock.

Land labs exist as perpetual educational projects that can span years to decades or more. Common goals within a land lab are often:

Green onions and garlic are growing in these raised metal garden beds. Raised beds are a great addition to a land lab as they make gardening more accessible for people of all ages. Raised Vegetable Beds.jpg
Green onions and garlic are growing in these raised metal garden beds. Raised beds are a great addition to a land lab as they make gardening more accessible for people of all ages.

Footprints and Sizes of Land Labs

Land labs can be designed in all shapes and sizes. The key attributes of a land lab are typically the following:

Cameras and environmental sensors help students and teachers monitor land lab conditions in real time.  This sensor takes photos of growing plants, records humidity / temperature / soil moisture and light levels. Environmental Cameras and Sensors.jpg
Cameras and environmental sensors help students and teachers monitor land lab conditions in real time.  This sensor takes photos of growing plants, records humidity / temperature / soil moisture and light levels.
Organic Liquid fertilizer can be produced by adding green biomass to tanks of water, adding leaf mold, and then allowing anaerobic fermentation and decay to occur.  The microbes break down nutrients in the biomass which can then be used to fertilize garden plants. Organic Liquid Fertilizer Tanks.jpg
Organic Liquid fertilizer can be produced by adding green biomass to tanks of water, adding leaf mold, and then allowing anaerobic fermentation and decay to occur.  The microbes break down nutrients in the biomass which can then be used to fertilize garden plants.

A small land lab could be as little as a courtyard, balcony garden, or a designated patch of land outside of a classroom window. Conversely, larger land lab could encompass hundreds of acres. The ideal size for a flexible land lab space allowing for many different ecological activities and circular systems is between 1/4 of an acre to 5 acres.

Sustainable societal solutions originating from land labs

Land labs are real-life environments by design. The project-based environment encourages students, teachers, and community members to experiment with ecological solutions that can be implemented on a small scale.

Ideally, the solutions and systems implemented in a land lab are transferred beyond the land lab and into the surrounding community. Composting, rainwater catchment, food-waste upcycling with methane digesters and BSF, local food production, harnessing of solar power, and other land lab systems can all be implemented throughout a community at various scales: residential, schools, community gardens, and local businesses.

The purpose of a land lab is to allow students to develop, implement, and learn about practical, sustainable solutions for addressing the five basic physiological needs all humans have:

  1. The need for clean water
  2. The need for healthy food
  3. The need for shelter
  4. The need for energy
  5. The need for sanitation

Our industrial systems of providing food, water, energy, shelter, and sanitation have inherent weaknesses to their centralized models. Long supply chains, fossil-fuel dependance, environmental damage, and the fragmented production of goods are common traits to industrial models. Land labs tie these 5 basic human needs together in integrated systems.

Permaculture is a concept of integrating these human needs into local, ecological, human-scale systems. Land labs can be thought of as an education area for promoting creative solutions for meeting these needs, while ensuring the land and local ecology are being restored in the process.

Land labs provide students with real-world experiences to help change their behavior as consumers, and get them more involved with meeting their 5 physiological needs.

Land labs are focused on production rather than just consumption. Western consumer culture makes the provision of our 5 basic physiological needs very abstract and far removed from the daily life of most people.

When these 5 basic needs are abstracted away from consumers, it is easier for the underlying systems providing these needs to operate without supervision to ensure they are ethical and sustainable.

Mental health benefits for students being outside

Biochar (charcoal) is produced in this double burn barrel.  Chunks of woody biomass are placed within an inner barrel, feedstock to "cook" the inner biomass is placed around the inner barrel, and then the feedstock is ignited.  This converts the woody biomass into almost pure carbon.  The carbon biochar is then used to amend compost.  This sequesters carbon, and provides a good home more microbes in the soil.  Some advanced biochar units can capture the heat for heating homes, water, air, and even produce electricity with the aid of a stirling engine. Biochar Burn Barrel.jpg
Biochar (charcoal) is produced in this double burn barrel.  Chunks of woody biomass are placed within an inner barrel, feedstock to "cook" the inner biomass is placed around the inner barrel, and then the feedstock is ignited.  This converts the woody biomass into almost pure carbon.  The carbon biochar is then used to amend compost.  This sequesters carbon, and provides a good home more microbes in the soil.  Some advanced biochar units can capture the heat for heating homes, water, air, and even produce electricity with the aid of a stirling engine.

In today's digital world, many students spend inordinate amounts of time on a screen both at home and at school. Inherent limits exist to project based learning that takes place entirely behind a screen or within a classroom.

Land labs help break students out of a digital environment by providing much needed time outdoors. Studies have shown that as our digital landscape of social media has exploded in popularity, depression and mental struggles have increased dramatically in students. [1]

Studies also show that student's mental health benefits immensely from being outdoors and participating in hands on projects with meaningful outcomes. [2]

Waste streams used in land labs

Rainwater is collected from a rooftop of a tiny house and then diverted into two 275 gallon IBC totes.  This is an affordable way to capture water for the gardens, livestock, and other land lab uses. Rainwater Collection System.jpg
Rainwater is collected from a rooftop of a tiny house and then diverted into two 275 gallon IBC totes.  This is an affordable way to capture water for the gardens, livestock, and other land lab uses.

Multiple types of local "waste" streams, that can often be obtained freely, can be used to supply a land lab with the raw materials to build soil, generate power, grow food, and restore biodiversity.

Part of the process of building a land lab is developing relationships with local businesses, neighbors, restaurants, and community members to begin upcycling these wastes into the materials and systems needed within a land lab. Many people have a desire to help students who are working hard on a meaningful community project. Much of the materials listed above can be had for little to no cost as relationships are formed.

Related Research Articles

<span class="mw-page-title-main">Permaculture</span> Approach to agriculture and land management

Permaculture is an approach to land management and settlement design that adopts arrangements observed in flourishing natural ecosystems. It includes a set of design principles derived using whole-systems thinking. It applies these principles in fields such as regenerative agriculture, town planning, rewilding, and community resilience. The term was coined in 1978 by Bill Mollison and David Holmgren, who formulated the concept in opposition to modern industrialized methods, instead adopting a more traditional or "natural" approach to agriculture.

Sustainable living describes a lifestyle that attempts to reduce the use of Earth's natural resources by an individual or society. Its practitioners often attempt to reduce their ecological footprint by altering their home designs and methods of transportation, energy consumption and diet. Its proponents aim to conduct their lives in ways that are consistent with sustainability, naturally balanced, and respectful of humanity's symbiotic relationship with the Earth's natural ecology. The practice and general philosophy of ecological living closely follows the overall principles of sustainable development.

Biointensive agriculture is an organic agricultural system that focuses on achieving maximum yields from a minimum area of land, while simultaneously increasing biodiversity and sustaining the soil fertility. The goal of the method is long term sustainability on a closed system basis. It is particularly effective for backyard gardeners and smallholder farmers in developing countries, and also has been used successfully on small-scale commercial farms.

<span class="mw-page-title-main">Engineers for a Sustainable World</span>

Engineers for a Sustainable World (ESW) is a not-for-profit network headquartered in Pittsburgh, PA, USA. ESW is an umbrella organization with chapters established at over 50 colleges, universities, and city chapters located primarily in the United States and Canada ESW members work on technical design projects that have a focus on sustainability and environmental issues. Projects can be located either on-campus, in the local community, or internationally. Chapters are made up of students or professionals and are semi-autonomous.

<span class="mw-page-title-main">Biodegradable waste</span> Organic matter that can be broken down

Biodegradable waste includes any organic matter in waste which can be broken down into carbon dioxide, water, methane, compost, humus, and simple organic molecules by micro-organisms and other living things by composting, aerobic digestion, anaerobic digestion or similar processes. It mainly includes kitchen waste, ash, soil, dung and other plant matter. In waste management, it also includes some inorganic materials which can be decomposed by bacteria. Such materials include gypsum and its products such as plasterboard and other simple sulfates which can be decomposed by sulfate reducing bacteria to yield hydrogen sulfide in anaerobic land-fill conditions.

<span class="mw-page-title-main">Biochar</span> Lightweight black residue, made of carbon and ashes, after pyrolysis of biomass

Biochar is the lightweight black residue, consisting of carbon and ashes, remaining after the pyrolysis of biomass, and is a form of charcoal. Biochar is defined by the International Biochar Initiative as the "solid material obtained from the thermochemical conversion of biomass in an oxygen-limited environment".

This is a glossary of environmental science.

The Centre for Appropriate Rural Technology (CART) is a community-driven sustainable development project located in the Eastern Cape of South Africa. It functions as a life skills centre in the heart of Sicambeni Village, a rural village near Port St Johns.

Sustainable landscaping is a modern type of gardening or landscaping that takes the environmental issue of sustainability into account. According to Loehrlein in 2009 this includes design, construction and management of residential and commercial gardens and incorporates organic lawn management and organic gardening techniques.

<i>Integral Urban House</i> 1970s California sustainability project

The Integral Urban House was a pioneering 1970s experiment in self-reliant urban homesteading. The house was located at 1516 5th St. in Berkeley, California between 1974 and 1984.

<span class="mw-page-title-main">Green urbanism</span> Practice of creating communities beneficial to humans and the environment

Green urbanism has been defined as the practice of creating communities beneficial to humans and the environment. According to Timothy Beatley, it is an attempt to shape more sustainable places, communities and lifestyles, and consume less of the world's resources. Urban areas are able to lay the groundwork of how environmentally integrated and sustainable city planning can both provide and improve environmental benefits on the local, national, and international levels. Green urbanism is interdisciplinary, combining the collaboration of landscape architects, engineers, urban planners, ecologists, transport planners, physicists, psychologists, sociologists, economists and other specialists in addition to architects and urban designers.

Resource recovery is using wastes as an input material to create valuable products as new outputs. The aim is to reduce the amount of waste generated, thereby reducing the need for landfill space, and optimising the values created from waste. Resource recovery delays the need to use raw materials in the manufacturing process. Materials found in municipal solid waste, construction and demolition waste, commercial waste and industrial wastes can be used to recover resources for the manufacturing of new materials and products. Plastic, paper, aluminium, glass and metal are examples of where value can be found in waste.

<span class="mw-page-title-main">Used coffee grounds</span> Waste product from brewing coffee

Used coffee grounds is the result of brewing coffee, and are the final product after preparation of coffee. Despite having several highly-desirable chemical components, used coffee grounds are generally regarded as waste, and they are usually thrown away or composted. As of 2019, it was estimated that over 15 million tonnes of spent coffee grounds are generated annually. Due to this quantity of waste and the chemical properties of used coffee grounds, potential uses for used coffee grounds are a hot topic of investigation as of the 2010s.

<span class="mw-page-title-main">Climate-friendly gardening</span> Low greenhouse gases gardening

Climate-friendly gardening is a form of gardening that can reduce emissions of greenhouse gases from gardens and encourage the absorption of carbon dioxide by soils and plants in order to aid the reduction of global warming. To be a climate-friendly gardener means considering both what happens in a garden and the materials brought into it as well as the impact they have on land use and climate. It can also include garden features or activities in the garden that help to reduce greenhouse gas emissions through processes not directly related to gardening.

<span class="mw-page-title-main">Regenerative agriculture</span> Conservation and rehabilitation approach to food and farming systems

Regenerative agriculture is a conservation and rehabilitation approach to food and farming systems. It focuses on topsoil regeneration, increasing biodiversity, improving the water cycle, enhancing ecosystem services, supporting biosequestration, increasing resilience to climate change, and strengthening the health and vitality of farm soil.

<span class="mw-page-title-main">Peri-urban agriculture</span> Aspect of agriculture

Peri-urban regions can be defined as 'superficial' rural areas that are within the orbit of immediate urban hubs, in other words, areas that surround large population centers. These regions can also be referred to as 'exurban areas', 'the rural-urban fringe' or the 'fringe', they include the transition zones between the outer limits of the commuter belt and the edge of newly constructed suburban areas.

<span class="mw-page-title-main">Sustainable Technology Optimization Research Center</span>

The Sustainable Technology Optimization Research Center (STORC) is a research facility located on the California State University Sacramento campus. There are several players included in operations at the STORC including Sacramento State's Risk Management, the College of Engineering and Computer Science (ECS), and two professors in the Environmental Studies department Brook Murphy and Dudley Burton. The STORC facility is primarily maintained by California State University, Sacramento student interns and volunteers who use applied science and technology to address real world policy, food, health, and energy issues of present-day society. Research at the STORC encompasses engineering and science to test and evaluate new ideas and approaches of sustainable technology to solve environmental problems. Faculty and students address sustainability with an interdisciplinary studies approach. The STORC Vision is to become "an international resource for practical, scalable, and financially viable solutions in the area of sustainable technologies that are suitable for private and/or public sector operations related to the management of energy, food, water, and waste". The STORC Mission is "to demonstrate the operation of innovative commercially viable physical systems that are underpinned by sustainable technologies, and to disseminate the associated plans, public policy discourse, and scientific findings".

<span class="mw-page-title-main">Bokashi (horticulture)</span> Food waste processing technique involving fermentation

Bokashi is a process that converts food waste and similar organic matter into a soil amendment which adds nutrients and improves soil texture. It differs from traditional composting methods in several respects. The most important are:

<span class="mw-page-title-main">School garden</span>

A school garden is an area designated for students to learn how to cultivate flowers and vegetable gardens in their school. They are commonly established to improve students' health, social development, and academic achievement.

<span class="mw-page-title-main">Climate-smart agriculture</span> System for agricultural productivity

Climate-smart agriculture (CSA) is a set of farming methods that has three main objectives with regards to climate change. Firstly, they use adaptation methods to respond to the effects of climate change on agriculture. Secondly, they aim to increase agricultural productivity and to ensure food security for a growing world population. Thirdly, they try to reduce greenhouse gas emissions from agriculture as much as possible. Climate-smart agriculture works as an integrated approach to managing land. This approach helps farmers to adapt their agricultural methods to the effects of climate change.

References

  1. www.braininstitute.pitt.edu https://www.braininstitute.pitt.edu/using-lots-social-media-sites-raises-depression-risk . Retrieved 2023-02-24.{{cite web}}: Missing or empty |title= (help)
  2. Meredith, Genevive R.; Rakow, Donald A.; Eldermire, Erin R. B.; Madsen, Cecelia G.; Shelley, Steven P.; Sachs, Naomi A. (2020). "Minimum Time Dose in Nature to Positively Impact the Mental Health of College-Aged Students, and How to Measure It: A Scoping Review". Frontiers in Psychology. 10: 2942. doi: 10.3389/fpsyg.2019.02942 . ISSN   1664-1078. PMC   6970969 . PMID   31993007.