Lenape potato

Last updated
Potato 'Lenape'
Genus Solanum
Species Solanum tuberosum
Cultivar 'Lenape'
BreederWilford Mills of Pennsylvania State University
OriginUSA

Lenape (B5141-6) is a potato cultivar first released in 1967 and named after the Lenape Native American tribe, [1] but it had to be pulled from the market in 1970 after findings of its high glycoalkaloid content. It was bred by Wilford Mills of Pennsylvania State University in collaboration with the Wise Potato Chip Company. [2] The Lenape potato was produced by crossing Delta Gold with a wild Peruvian potato ( Solanum chacoense ) known for its resistance to insects. [1] [3] It was selected for its high specific gravity (percentage dry matter) and low sugar content which made it ideal for producing potato chips [1] but it was also immune to potato virus A and resistant to common strains of late blight. [4] It is of medium-late maturity and produces round, white tubers with shallow eyes. [1]

Contents

Glycoalkaloid content

After the Lenape variety was released for commercial production, a potato breeder in Ontario ate some to see if they might be suitable as new potatoes but soon felt nauseated. When the same occurred next time he ate them, he sent a sample to be analysed by a vegetable biochemist, Dr. Ambrose Zitnak of the University of Guelph, who found they contained exceptionally high levels of glycoalkaloids (mainly solanine and chaconine), the natural toxins found in potatoes that help protect them from pests and disease. [5] Lenape potatoes collected from around Canada were found to contain over 16–35 mg of glycoalkaloids per 100 g of fresh potato compared to 3–18 mg in other varieties. [4] Samples grown at 39 locations around the US had an average of 29 mg per 100 g of potato but ranged from 16–65 mg compared to an average of 8 mg for five other varieties. [6] Previously, high levels of glycoalkaloids in potatoes were associated with damage during harvest or potatoes that turned green due to exposure to light, rather than being genetically determined. [4] The variety was removed from the market in 1970 and scientists recommended that future new potato varieties be tested for their glycoalkaloid content before widespread distribution. [4] [7]

Unintended risks

The variety has been cited as an example of how conventional plant breeding can produce varieties with high levels of toxins and this has been compared with the relatively lower risk of potential unintended health effects from genetically engineered crops (GM crops). [2] [8] In 1992 the Los Angeles Times reported that critics of GM crops cited it as an example of the problems they expected GM crops to create, despite the Lenape being a conventionally bred variety and not GM, while advocates noted that lessons learned from Lenape meant that regulations were in place to prevent a recurrence. [7] In the case of the Lenape potato, the exceptionally high glycoalkaloid levels were likely due to the unintended introduction (through cross breeding) of new glycoalkaloid genes from the wild Peruvian parent. [9] Genetic engineering avoids the risk of unintended introduction of new genes, as only selected genes that have been characterized in detail are introduced. [10]

Use in breeding

Lenape was kept for use in breeding and breeders selected for progeny containing high dry matter but rejected those with high glycoalkaloids. [11] Lenape is a parent of chipping varieties including Atlantic, Trent, Belchip and Snowden and a grandparent of several others. [12] A study published in 1998 found that Lenape had the highest dry matter content of chipping varieties released in the USA and concluded that the release of Lenape marked a "major advance in chipping quality" and was particularly responsible for a trend of increased dry matter content in newer varieties. [12]

Related Research Articles

Biotechnology Use of living systems and organisms to develop or make useful products

Biotechnology is a broad area of biology, involving the use of living systems and organisms to develop or make products. Depending on the tools and applications, it often overlaps with related scientific fields. In the late 20th and early 21st centuries, biotechnology has expanded to include new and diverse sciences, such as genomics, recombinant gene techniques, applied immunology, and development of pharmaceutical therapies and diagnostic tests. The term "Biotechnology" was first used by "Karl Ereky" in 1919, meaning the production of products from raw materials with the aid of living organisms.

Genetically modified maize Genetically modified crop

Genetically modified maize (corn) is a genetically modified crop. Specific maize strains have been genetically engineered to express agriculturally-desirable traits, including resistance to pests and to herbicides. Maize strains with both traits are now in use in multiple countries. GM maize has also caused controversy with respect to possible health effects, impact on other insects and impact on other plants via gene flow. One strain, called Starlink, was approved only for animal feed in the US but was found in food, leading to a series of recalls starting in 2000.

Genetically modified organism Organisms whose genetic material has been altered using genetic engineering methods

A genetically modified organism (GMO) is any organism whose genetic material has been altered using genetic engineering techniques. The exact definition of a genetically modified organism and what constitutes genetic engineering varies, with the most common being an organism altered in a way that "does not occur naturally by mating and/or natural recombination". A wide variety of organisms have been genetically modified (GM), from animals to plants and microorganisms. Genes have been transferred within the same species, across species, and even across kingdoms. New genes can be introduced, or endogenous genes can be enhanced, altered, or knocked out.

Genetic engineering Direct manipulation of an organisms genome using biotechnology

Genetic engineering, also called genetic modification or genetic manipulation, is the direct manipulation of an organism's genes using biotechnology. It is a set of technologies used to change the genetic makeup of cells, including the transfer of genes within and across species boundaries to produce improved or novel organisms. New DNA is obtained by either isolating and copying the genetic material of interest using recombinant DNA methods or by artificially synthesising the DNA. A construct is usually created and used to insert this DNA into the host organism. The first recombinant DNA molecule was made by Paul Berg in 1972 by combining DNA from the monkey virus SV40 with the lambda virus. As well as inserting genes, the process can be used to remove, or "knock out", genes. The new DNA can be inserted randomly, or targeted to a specific part of the genome.

Potato Plant species producing the tuber used as a staple food

The potato is a root vegetable native to the Americas, a starchy tuber of the plant Solanum tuberosum, and the plant itself is a perennial in the nightshade family, Solanaceae.

Genetically modified food Foods produced from organisms that have had changes introduced into their DNA

Genetically modified foods, also known as genetically engineered foods, or bioengineered foods are foods produced from organisms that have had changes introduced into their DNA using the methods of genetic engineering. Genetic engineering techniques allow for the introduction of new traits as well as greater control over traits when compared to previous methods, such as selective breeding and mutation breeding.

Solanine Glycoalkyloid poison found in the nightshade family of plants

Solanine is a glycoalkaloid poison found in species of the nightshade family within the genus Solanum, such as the potato, the tomato, and the eggplant. It can occur naturally in any part of the plant, including the leaves, fruit, and tubers. Solanine has pesticidal properties, and it is one of the plant's natural defenses. Solanine was first isolated in 1820 from the berries of the European black nightshade, after which it was named. It belongs to the chemical family of saponins.

Genetically modified crops Plants used in agriculture

Genetically modified crops are plants used in agriculture, the DNA of which has been modified using genetic engineering methods. Plant genomes can be engineered by physical methods or by use of Agrobacterium for the delivery of sequences hosted in T-DNA binary vectors. In most cases, the aim is to introduce a new trait to the plant which does not occur naturally in the species. Examples in food crops include resistance to certain pests, diseases, environmental conditions, reduction of spoilage, resistance to chemical treatments, or improving the nutrient profile of the crop. Examples in non-food crops include production of pharmaceutical agents, biofuels, and other industrially useful goods, as well as for bioremediation.

Genetically modified food controversies Controversies over GMO food

Genetically modified food controversies are disputes over the use of foods and other goods derived from genetically modified crops instead of conventional crops, and other uses of genetic engineering in food production. The disputes involve consumers, farmers, biotechnology companies, governmental regulators, non-governmental organizations, and scientists. The key areas of controversy related to genetically modified food are whether such food should be labeled, the role of government regulators, the objectivity of scientific research and publication, the effect of genetically modified crops on health and the environment, the effect on pesticide resistance, the impact of such crops for farmers, and the role of the crops in feeding the world population. In addition, products derived from GMO organisms play a role in the production of ethanol fuels and pharmaceuticals.

Tomatine

Tomatine is a glycoalkaloid, found in the stems and leaves of tomato plants, and in the fruits at much lower concentrations. It has fungicidal, antimicrobial, and insecticidal properties. Chemically pure tomatine is a white crystalline solid at standard temperature and pressure. Tomatine, as well as the closely related aglycon derivative tomatidine have been shown to have multiple health benefits.

Plant genetics Study of genes and heredity in plants

Plant genetics is the study of genes, genetic variation, and heredity specifically in plants. It is generally considered a field of biology and botany, but intersects frequently with many other life sciences and is strongly linked with the study of information systems. Plant genetics is similar in many ways to animal genetics but differs in a few key areas.

The Non-GMO Project

The Non-GMO Project is a 501(c)(3) non-profit organization focusing on genetically modified organisms. The organization began as an initiative of independent natural foods retailers in the U.S. and Canada, with the stated aim to label products produced in compliance with their Non-GMO Project Standard, which aims to prevent genetically modified foodstuffs from being present in retail food products. The organization is headquartered in Bellingham, Washington. The Non-GMO label began use in 2012 with Numi Organic Tea products.

Genetically modified soybean Soybean that has had DNA introduced into it using genetic engineering techniques

A genetically modified soybean is a soybean that has had DNA introduced into it using genetic engineering techniques. In 1996 the first genetically modified soybean was introduced to the U.S. market, by Monsanto. In 2014, 90.7 million hectares of GM soy were planted worldwide, 82% of the total soy cultivation area.

Genetically modified canola is a genetically modified crop. The first strain, Roundup Ready canola, was developed by Monsanto for tolerance to glyphosate, the active ingredient in the commonly used herbicide Roundup.

Pusztai affair

The Pusztai affair is a controversy that began in 1998. Protein scientist Árpád Pusztai went public with the initial results of unpublished research he was conducting at the Rowett Institute in Aberdeen, Scotland, investigating the possible effects of genetically modified potatoes upon rats. Pusztai claimed that the genetically modified potatoes had stunted growth and repressed the rats' immune systems while thickening their gut mucosa. Initially supported by the Rowett Institute, his comments on a British television programme caused a storm of controversy, and the Rowett Institute withdrew its support. Pusztai was suspended and misconduct procedures were used to seize his data and ban him from speaking publicly. The institute did not renew his annual contract and Pusztai was criticized by the British Royal Society and some other scientists for making an announcement before his experiment was complete or peer-reviewed and for the experiment's design, methodology and analysis. Some of the data from the study was eventually published in The Lancet in 1999 after five out of six peer reviewers approved of the study – triggering further controversy.

Regulation of genetic engineering Overview of the regulation of genetic engineering

The regulation of genetic engineering varies widely by country. Countries such as the United States, Canada, Lebanon and Egypt use substantial equivalence as the starting point when assessing safety, while many countries such as those in the European Union, Brazil and China authorize GMO cultivation on a case-by-case basis. Many countries allow the import of GM food with authorization, but either do not allow its cultivation or have provisions for cultivation, but no GM products are yet produced. Most countries that do not allow for GMO cultivation do permit research. Most (85%) of the world's GMO crops are grown in the Americas. One of the key issues concerning regulators is whether GM products should be labeled. Labeling of GMO products in the marketplace is required in 64 countries. Labeling can be mandatory up to a threshold GM content level or voluntary. A study investigating voluntary labeling in South Africa found that 31% of products labeled as GMO-free had a GM content above 1.0%. In Canada and the USA labeling of GM food is voluntary, while in Europe all food or feed which contains greater than 0.9% of approved GMOs must be labelled.

Mutation breeding, sometimes referred to as "variation breeding", is the process of exposing seeds to chemicals or radiation in order to generate mutants with desirable traits to be bred with other cultivars. Plants created using mutagenesis are sometimes called mutagenic plants or mutagenic seeds. From 1930 to 2014 more than 3200 mutagenic plant varieties were released that have been derived either as direct mutants (70%) or from their progeny (30%). Crop plants account for 75% of released mutagenic species with the remaining 25% ornamentals or decorative plants. However, although the FAO/IAEA reported in 2014 that over 1,000 mutant varieties of major staple crops were being grown worldwide, it is unclear how many of these varieties are currently used in agriculture or horticulture around the world, as these seeds are not always identified or labeled as having a mutagenic provenance.

Genetically modified food in the European Union

Genetic engineering in the European Union has varying degrees of regulation.

March Against Monsanto

The March Against Monsanto is an international grassroots movement and protest against Monsanto corporation, a producer of genetically modified organism (GMOs) and Roundup, a glyphosate-based herbicide. The movement was founded by Tami Canal in response to the failure of California Proposition 37, a ballot initiative which would have required labeling food products made from GMOs. Advocates support mandatory labeling laws for food made from GMOs.

GMO Answers is a front group launched by the agricultural biotechnology industry in July 2013 to participate in public debate around genetically modified organisms (GMOs) in crops in the U.S. food supply.

References

  1. 1 2 3 4 Akeley, R. V.; Mills, W. R.; Cunningham, C. E. & Watts, James (1968). "Lenape: A new potato variety high in solids and chipping quality". American Potato Journal. 45 (4): 142–145. doi:10.1007/BF02863068. S2CID   30347374.
  2. 1 2 Koerth-Baker, Marggie (2013-03-25). "The case of the poison potato". boingboing.net. Retrieved 2015-11-08.
  3. Friedman, Mendel; McDonald, Gary M. & Filadelfi-Keszi, Mary Ann (1997). "Potato Glycoalkaloids: Chemistry, Analysis, Safety, and Plant Physiology". Critical Reviews in Plant Sciences. 16 (1): 55–132. doi:10.1080/07352689709701946.
  4. 1 2 3 4 Zitnak, A. & Johnston, G. R. (July 1970). "Glycoalkaloid content of B5141-6 potatoes". American Potato Journal. 47 (7): 256–260. doi:10.1007/BF02863068. S2CID   30347374.
  5. Brown, Nancy Marie & Fedoroff, Nina V. (30 September 2004). Mendel in the Kitchen: A Scientist's View of Genetically Modified Food. Joseph Henry Press. pp. 143–. ISBN   978-0-309-13368-5.
  6. Sinden, S. L. & Webb, Raymon Ellis (1974). Effect of Environment on Glycoalkaloid Content of Six Potato Varieties at 39 Locations. Agricultural Research Service, U.S. Department of Agriculture. pp. 1–30.
  7. 1 2 Puzo, Daniel (1992-06-04). "The Biotech Debate". Los Angeles Times. Retrieved 2015-11-08.
  8. Doyle, Jack (1 January 1988). Biotechnology and the Food Supply: Proceedings of a Symposium. National Academies. pp. 56–57.
  9. Fedoroff, Nina V.; Brown, Nancy Marie (2004-09-30). Mendel in the Kitchen: A Scientist's View of Genetically Modified Foods. Joseph Henry Press. ISBN   9780309133685.
  10. Health, National Research Council (US) Committee on Identifying and Assessing Unintended Effects of Genetically Engineered Foods on Human (2004-01-01). Unintended Effects from Breeding. National Academies Press (US).
  11. Committee on Identifying and Assessing Unintended Effects of Genetically Engineered Foods on Human Health (8 July 2004). Safety of Genetically Engineered Foods: Approaches to Assessing Unintended Health Effects . National Academies Press. pp.  42–43. ISBN   978-0-309-16615-7.
  12. 1 2 Love, Stephen L.; Pavek, Joseph J.; Thompson-Johns, Asunta & Bohl, William (1998). "Breeding progress for potato chip quality in North American cultivars". American Potato Journal. 75: 27–36. doi:10.1007/BF02883514. S2CID   20654504.