Leveling effect

Last updated
Acid-base discrimination windows of common solvents Acid-base discrimination windows of common solvents.jpg
Acid-base discrimination windows of common solvents

Leveling effect or solvent leveling refers to the effect of solvent on the properties of acids and bases. The strength of a strong acid is limited ("leveled") by the basicity of the solvent. Similarly the strength of a strong base is leveled by the acidity of the solvent. When a strong acid is dissolved in water, it reacts with it to form hydronium ion (H3O+). [2] An example of this would be the following reaction, where "HA" is the strong acid:

Contents

HA + H2O → A + H3O+

Any acid that is stronger than H3O+ reacts with H2O to form H3O+. Therefore, no acid stronger than H3O+ exists in H2O. For example, aqueous perchloric acid (HClO4), aqueous hydrochloric acid (HCl) and aqueous nitric acid (HNO3) are all completely ionized, and are all equally strong acids. [3]

Similarly, when ammonia is the solvent, the strongest acid is ammonium (NH4+), thus HCl and a super acid exert the same acidifying effect.

The same argument applies to bases. In water, OH is the strongest base. Thus, even though sodium amide (NaNH2) is an exceptional base (pKa of NH3 ~ 33), in water it is only as good as sodium hydroxide. On the other hand, NaNH2 is a far more basic reagent in ammonia than is NaOH.

The pH range allowed by a particular solvent is called the acid-base discrimination window. [1]

Leveling and differentiating solvents

Strong bases are leveling solvents for acids, weak bases are differentiating solvents for acids. In a leveling solvent, many acids are completely dissociated and are thus of the same strength. All acids tend to become indistinguishable in strength when dissolved in strongly basic solvents owing to the greater affinity of strong bases for protons. This is called the leveling effect.[ citation needed ]

In a differentiating solvent on the other hand, various acids dissociate to different degrees and thus have different strengths. For example, anhydrous acetic acid (CH3COOH) as solvent is a weaker proton acceptor than water. Strong aqueous acids such as hydrochloric acid and perchloric acid are only partly dissociated in anhydrous acetic acid and their strengths are unequal; in fact perchloric acid is about 5000 times stronger than hydrochloric acid in this solvent. [3] A weakly basic solvent such as acetic acid has less tendency than a more strongly basic one such as water to accept a proton. Similarly a weakly acidic solvent has less tendency to donate protons than a strong acid. [ citation needed ]

Because of the leveling effect of common solvents, studies on super acids are conducted in more differentiating solvents that are very weakly basic such as sulfur dioxide (liquefied) and SO2ClF. [4]

Types of solvent on the basis of proton interaction

On the basis of proton interaction, solvents are of four types,

(i) Protophilic solvents: Solvents which have greater tendency to accept protons, i.e., water, alcohol, liquid ammonia, etc.

(ii) Protogenic solvents: Solvents which have the tendency to produce protons, i.e., water, liquid hydrogen chloride, glacial acetic acid, etc.

(iii) Amphiprotic solvents: Solvents which act both as protophilic or protogenic, e.g., water, ammonia, ethyl alcohol, etc.

(iv) Aprotic solvents: Solvents which neither donate nor accept protons, e.g., benzene, carbon tetrachloride, carbon disulphide, etc.

HCl acts as an acid in H2O, a stronger acid in NH3, a weak acid in CH3COOH, neutral in C6H6 and a weak base in HF.

Related Research Articles

<span class="mw-page-title-main">Acid</span> Chemical compound giving a proton or accepting an electron pair

An acid is a molecule or ion capable of either donating a proton (i.e. hydrogen ion, H+), known as a Brønsted–Lowry acid, or forming a covalent bond with an electron pair, known as a Lewis acid.

<span class="mw-page-title-main">Acid–base reaction</span> Chemical reaction between an acid and a base

In chemistry, an acid–base reaction is a chemical reaction that occurs between an acid and a base. It can be used to determine pH via titration. Several theoretical frameworks provide alternative conceptions of the reaction mechanisms and their application in solving related problems; these are called the acid–base theories, for example, Brønsted–Lowry acid–base theory.

In chemistry, a salt is a chemical compound consisting of an ionic assembly of positively charged cations and negatively charged anions, which results in a compound with no net electric charge. A common example is table salt, with positively charged sodium ions and negatively charged chloride ions.

A conjugate acid, within the Brønsted–Lowry acid–base theory, is a chemical compound formed when an acid gives a proton to a base—in other words, it is a base with a hydrogen ion added to it, as it loses a hydrogen ion in the reverse reaction. On the other hand, a conjugate base is what remains after an acid has donated a proton during a chemical reaction. Hence, a conjugate base is a substance formed by the removal of a proton from an acid, as it can gain a hydrogen ion in the reverse reaction. Because some acids can give multiple protons, the conjugate base of an acid may itself be acidic.

In chemistry, hydronium (hydroxonium in traditional British English) is the common name for the cation [H3O]+, also written as H3O+, the type of oxonium ion produced by protonation of water. It is often viewed as the positive ion present when an Arrhenius acid is dissolved in water, as Arrhenius acid molecules in solution give up a proton (a positive hydrogen ion, H+) to the surrounding water molecules (H2O). In fact, acids must be surrounded by more than a single water molecule in order to ionize, yielding aqueous H+ and conjugate base. Three main structures for the aqueous proton have garnered experimental support: the Eigen cation, which is a tetrahydrate, H3O+(H2O)3, the Zundel cation, which is a symmetric dihydrate, H+(H2O)2, and the Stoyanov cation, an expanded Zundel cation, which is a hexahydrate: H+(H2O)2(H2O)4. Spectroscopic evidence from well-defined IR spectra overwhelmingly supports the Stoyanov cation as the predominant form. For this reason, it has been suggested that wherever possible, the symbol H+(aq) should be used instead of the hydronium ion.

<span class="mw-page-title-main">Perchloric acid</span> Chemical compound

Perchloric acid is a mineral acid with the formula HClO4. Usually found as an aqueous solution, this colorless compound is a stronger acid than sulfuric acid, nitric acid and hydrochloric acid. It is a powerful oxidizer when hot, but aqueous solutions up to approximately 70% by weight at room temperature are generally safe, only showing strong acid features and no oxidizing properties. Perchloric acid is useful for preparing perchlorate salts, especially ammonium perchlorate, an important rocket fuel component. Perchloric acid is dangerously corrosive and readily forms potentially explosive mixtures.

In chemistry, an acid dissociation constant is a quantitative measure of the strength of an acid in solution. It is the equilibrium constant for a chemical reaction

<span class="mw-page-title-main">Base (chemistry)</span> Type of chemical substance

In chemistry, there are three definitions in common use of the word "base": Arrhenius bases, Brønsted bases, and Lewis bases. All definitions agree that bases are substances that react with acids, as originally proposed by G.-F. Rouelle in the mid-18th century.

In chemistry, an amphoteric compound is a molecule or ion that can react both as an acid and as a base. What exactly this can mean depends on which definitions of acids and bases are being used.

In chemistry, protonation (or hydronation) is the adding of a proton (or hydron, or hydrogen cation), usually denoted by H+, to an atom, molecule, or ion, forming a conjugate acid. (The complementary process, when a proton is removed from a Brønsted–Lowry acid, is deprotonation.) Some examples include

<span class="mw-page-title-main">Neutralization (chemistry)</span> Chemical reaction in which an acid and a base react quantitatively

In chemistry, neutralization or neutralisation is a chemical reaction in which acid and a base react with an equivalent quantity of each other. In a reaction in water, neutralization results in there being no excess of hydrogen or hydroxide ions present in the solution. The pH of the neutralized solution depends on the acid strength of the reactants.

The Brønsted–Lowry theory (also called proton theory of acids and bases) is an acid–base reaction theory which was first developed by Johannes Nicolaus Brønsted and Thomas Martin Lowry independently in 1923. The basic concept of this theory is that when an acid and a base react with each other, the acid forms its conjugate base, and the base forms its conjugate acid by exchange of a proton (the hydrogen cation, or H+). This theory generalises the Arrhenius theory.

<span class="mw-page-title-main">Dissociation (chemistry)</span> Separation of molecules or ionic compounds into smaller constituent entities

Dissociation in chemistry is a general process in which molecules (or ionic compounds such as salts, or complexes) separate or split into other things such as atoms, ions, or radicals, usually in a reversible manner. For instance, when an acid dissolves in water, a covalent bond between an electronegative atom and a hydrogen atom is broken by heterolytic fission, which gives a proton (H+) and a negative ion. Dissociation is the opposite of association or recombination.

<span class="mw-page-title-main">Hydrogen halide</span> Chemical compound consisting of hydrogen bonded to a halogen element

In chemistry, hydrogen halides are diatomic, inorganic compounds that function as Arrhenius acids. The formula is HX where X is one of the halogens: fluorine, chlorine, bromine, iodine, astatine, or tennessine. All known hydrogen halides are gases at Standard Temperature and Pressure.

<span class="mw-page-title-main">Sulfamic acid</span> Chemical compound

Sulfamic acid, also known as amidosulfonic acid, amidosulfuric acid, aminosulfonic acid, sulphamic acid and sulfamidic acid, is a molecular compound with the formula H3NSO3. This colourless, water-soluble compound finds many applications. Sulfamic acid melts at 205 °C before decomposing at higher temperatures to water, sulfur trioxide, sulfur dioxide and nitrogen.

In chemistry, a strong electrolyte is a solute that completely, or almost completely, ionizes or dissociates in a solution. These ions are good conductors of electric current in the solution.

An inorganic nonaqueous solvent is a solvent other than water, that is not an organic compound. These solvents are used in chemical research and industry for reactions that cannot occur in aqueous solutions or require a special environment. Inorganic nonaqueous solvents can be classified into two groups, protic solvents and aprotic solvents. Early studies on inorganic nonaqueous solvents evaluated ammonia, hydrogen fluoride, sulfuric acid, as well as more specialized solvents, hydrazine, and selenium oxychloride.

The Hammett acidity function (H0) is a measure of acidity that is used for very concentrated solutions of strong acids, including superacids. It was proposed by the physical organic chemist Louis Plack Hammett and is the best-known acidity function used to extend the measure of Brønsted–Lowry acidity beyond the dilute aqueous solutions for which the pH scale is useful.

Acid–base extraction is a subclass of liquid–liquid extractions and involves the separation of chemical species from other acidic or basic compounds. It is typically performed during the work-up step following a chemical synthesis to purify crude compounds and results in the product being largely free of acidic or basic impurities. A separatory funnel is commonly used to perform an acid-base extraction.

Acid strength is the tendency of an acid, symbolised by the chemical formula , to dissociate into a proton, , and an anion, . The dissociation of a strong acid in solution is effectively complete, except in its most concentrated solutions.

References

  1. 1 2 Atkins, P.W. (2010). Shriver and Atkins' Inorganic Chemistry, Fifth Edition . Oxford University Press. pp.  121. ISBN   978-1-42-921820-7.
  2. Zumdahl, S. S. “Chemistry” Heath, 1986: Lexington, MA. ISBN 0-669--04529-2.
  3. 1 2 Skoog, Douglas A.; West, Donald M.; Holler, F. James; Crouch, Stanley R. (2014). Fundamentals of Analytical Chemistry (9th ed.). Brooks/Cole. pp. 201–202. ISBN   978-0-495-55828-6.
  4. Olah, G. A.; Prakash, G. K. S.; Wang, Q.; Li, X. (2001). "Hydrogen Fluoride–Antimony(V) Fluoride". In Paquette, L. (ed.). Encyclopedia of Reagents for Organic Synthesis. New York: J. Wiley & Sons. doi:10.1002/047084289X.rh037m. ISBN   978-0471936237.