Liquid-crystal laser

Last updated

A liquid-crystal laser is a laser that uses a liquid crystal as the resonator cavity, allowing selection of emission wavelength and polarization from the active laser medium. The lasing medium is usually a dye doped into the liquid crystal. Liquid-crystal lasers are comparable in size to diode lasers, but provide the continuous wide spectrum tunability of dye lasers while maintaining a large coherence area. The tuning range is typically several tens of nanometers. [1] Self-organization at micrometer scales reduces manufacturing complexity compared to using layered photonic metamaterials. Operation may be either in continuous wave mode or in pulsed mode. [2]

Contents

History

Distributed feedback lasing using Bragg reflection of a periodic structure instead of external mirrors was first proposed in 1971, [3] predicted theoretically with cholesteric liquid crystals in 1978, [4] achieved experimentally in 1980, [5] and explained in terms of a photonic band gap in 1998. [6] [7] [8] A United States Patent issued in 1973 described a liquid-crystal laser that uses "a liquid lasing medium having internal distributed feedback by virtue of the molecular structure of a cholesteric liquid-crystal material." [9]

Mechanism

Starting with a liquid crystal in the nematic phase, the desired helical pitch (the distance along the helical axis for one complete rotation of the nematic plane subunits) can be achieved by doping the liquid crystal with a chiral molecule. [8] For light circularly polarized with the same handedness, this regular modulation of the refractive index yields selective reflection of the wavelength given by the helical pitch, allowing the liquid-crystal laser to serve as its own resonator cavity. Photonic crystals are amenable to band theory methods, with the periodic dielectric structure playing the role of the periodic electric potential and a photonic band gap (reflection notch) corresponding to forbidden frequencies. The lower photon group velocity and higher density of states near the photonic bandgap suppresses spontaneous emission and enhances stimulated emission, providing favorable conditions for lasing. [7] [10] If the electronic band edge falls in the photonic bandgap, electron-hole recombination is strictly suppressed. [11] This allows for devices with high lasing efficiency, low lasing threshold, and stable frequency, where the liquid-crystal laser acts its own waveguide. "Colossal" nonlinear change in refractive index is achievable in doped nematic-phase liquid crystals, that is the refractive index can change with illumination intensity at a rate of about 103cm2/W of illumination intensity. [12] [13] [14] Most systems use a semiconductor pumping laser to achieve population inversion, though flash lamp and electrical pumping systems are possible. [15]

Tuning of the output wavelength is achieved by smoothly varying the helical pitch: as the winding changes, so does the length scale of the crystal. This in turn shifts the band edge and changes the optical path length in the lasing cavity. Applying a static electric field perpendicular to the dipole moment of the local nematic phase rotates the rod-like subunits in the hexagonal plane and reorders the chiral phase, winding or unwinding the helical pitch. [16] Similarly, optical tuning of the output wavelength is available using laser light far from the pick-up frequency of the gain medium, with degree of rotation governed by intensity and the angle between the polarization of the incident light and the dipole moment. [17] [18] [19] Reorientation is stable and reversible. The chiral pitch of a cholesteric phase tends to unwind with increasing temperature, with a disorder-order transition to the higher symmetry nematic phase at the high end. [5] [20] [21] [22] By applying a temperature gradient perpendicular to the direction of emission varying the location of stimulation, frequency may be selected across a continuous spectrum. [23] Similarly, a quasi-continuous doping gradient yields multiple laser lines from different locations on the same sample. [15] Spatial tuning may also be accomplished using a wedge cell. The boundary conditions of the narrower cell squeeze the helical pitch by requiring a particular orientation at the edge, with discrete jumps where the outer cells rotate to the next stable orientation; frequency variation between jumps is continuous. [24]

If a defect is introduced into the liquid crystal to disturb the periodicity, a single allowed mode may be created inside of the photonic bandgap, reducing power leeching by spontaneous emission at adjacent frequencies. Defect mode lasing was first predicted in 1987, and was demonstrated in 2003. [11] [25] [26]

While most such thin films lase on the axis normal to the film's surface, some will lase on a conic angle around that axis. [27]

Applications

Related Research Articles

<span class="mw-page-title-main">Laser</span> Device which emits light via optical amplification

A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word "laser" is an acronym for "light amplification by stimulated emission of radiation". The first laser was built in 1960 by Theodore H. Maiman at Hughes Research Laboratories, based on theoretical work by Charles Hard Townes and Arthur Leonard Schawlow.

<span class="mw-page-title-main">Liquid crystal</span> State of matter with properties of both conventional liquids and crystals

Liquid crystal (LC) is a state of matter whose properties are between those of conventional liquids and those of solid crystals. For example, a liquid crystal may flow like a liquid, but its molecules may be oriented in a crystal-like way. There are many types of LC phases, which can be distinguished by their optical properties. The contrasting textures arise due to molecules within one area of material ("domain") being oriented in the same direction but different areas having different orientations. LC materials may not always be in a LC state of matter.

<span class="mw-page-title-main">Dye laser</span> Equipment using an organic dye to emit coherent light

A dye laser is a laser that uses an organic dye as the lasing medium, usually as a liquid solution. Compared to gases and most solid state lasing media, a dye can usually be used for a much wider range of wavelengths, often spanning 50 to 100 nanometers or more. The wide bandwidth makes them particularly suitable for tunable lasers and pulsed lasers. The dye rhodamine 6G, for example, can be tuned from 635 nm (orangish-red) to 560 nm (greenish-yellow), and produce pulses as short as 16 femtoseconds. Moreover, the dye can be replaced by another type in order to generate an even broader range of wavelengths with the same laser, from the near-infrared to the near-ultraviolet, although this usually requires replacing other optical components in the laser as well, such as dielectric mirrors or pump lasers.

<span class="mw-page-title-main">Ti-sapphire laser</span>

Ti:sapphire lasers (also known as Ti:Al2O3 lasers, titanium-sapphire lasers, or Ti:sapphs) are tunable lasers which emit red and near-infrared light in the range from 650 to 1100 nanometers. These lasers are mainly used in scientific research because of their tunability and their ability to generate ultrashort pulses. Lasers based on Ti:sapphire were first constructed and invented in June 1982 by Peter Moulton at the MIT Lincoln Laboratory.

A Raman laser is a specific type of laser in which the fundamental light-amplification mechanism is stimulated Raman scattering. In contrast, most "conventional" lasers rely on stimulated electronic transitions to amplify light.

<span class="mw-page-title-main">Solid-state laser</span> Laser which uses a solid gain medium

A solid-state laser is a laser that uses a gain medium that is a solid, rather than a liquid as in dye lasers or a gas as in gas lasers. Semiconductor-based lasers are also in the solid state, but are generally considered as a separate class from solid-state lasers, called laser diodes.

Amplified spontaneous emission (ASE) or superluminescence is light, produced by spontaneous emission, that has been optically amplified by the process of stimulated emission in a gain medium. It is inherent in the field of random lasers.

A fiber laser is a laser in which the active gain medium is an optical fiber doped with rare-earth elements such as erbium, ytterbium, neodymium, dysprosium, praseodymium, thulium and holmium. They are related to doped fiber amplifiers, which provide light amplification without lasing. Fiber nonlinearities, such as stimulated Raman scattering or four-wave mixing can also provide gain and thus serve as gain media for a fiber laser.

Optical axis gratings (OAGs) are gratings of optical axis of a birefringent material. In OAGs, the birefringence of the material is constant, while the direction of optical axis is periodically modulated in a fixed direction. In this way they are different from the regular phase gratings, in which the refractive index is modulated and the direction of the optical axis is constant.

Power scaling of a laser is increasing its output power without changing the geometry, shape, or principle of operation. Power scalability is considered an important advantage in a laser design.

Chiral Photonics, Inc. is a photonics company based in Pine Brook, New Jersey, founded in 1999. The company is developing a new class of optical devices based on twisting glass optical fibers. These in-fiber devices aim to displace discrete optical elements such as lasers, filters and sensors. They benefit from optical fiber’s transmission efficiency, robustness and ease of integration.

A blue phase mode LCD is a liquid crystal display (LCD) technology that uses highly twisted cholesteric phases in a blue phase. It was first proposed in 2007 to obtain a better display of moving images with, for example, frame rates of 100–120 Hz to improve the temporal response of LCDs. This operational mode for LCDs also does not require anisotropic alignment layers and thus theoretically simplifies the LCD manufacturing process.

<span class="mw-page-title-main">Subwavelength-diameter optical fibre</span>

A subwavelength-diameter optical fibre is an optical fibre whose diameter is less than the wavelength of the light being propagated through it. An SDF usually consists of long thick parts at both ends, transition regions (tapers) where the fibre diameter gradually decreases down to the subwavelength value, and a subwavelength-diameter waist, which is the main acting part. Due to such a strong geometrical confinement, the guided electromagnetic field in an SDF is restricted to a single mode called fundamental.

<span class="mw-page-title-main">Nematicon</span>

In optics, a nematicon is a spatial soliton in nematic liquid crystals (NLC). The name was invented in 2003 by G. Assanto. and used thereafter Nematicons are generated by a special type of optical nonlinearity present in NLC: the light induced reorientation of the molecular director. This nonlinearity arises from the fact that the molecular director tends to align along the electric field of light. Nematicons are easy to generate because the NLC dielectric medium exhibits the following properties:

<span class="mw-page-title-main">Solid-state dye laser</span>

Solid-state dye lasers (SSDL) were introduced in 1967 by Soffer and McFarland. In these solid-state lasers, the gain medium is a laser dye-doped organic matrix such as poly(methyl methacrylate) (PMMA), rather than a liquid solution of the dye. An example is rhodamine 6G-doped PMMA. These lasers are also referred to as solid-state organic lasers and solid-state dye-doped polymer lasers.

<span class="mw-page-title-main">Organic laser</span>

Organic lasers use an organic material as the gain medium. The first organic laser was the liquid dye laser. These lasers use laser dye solutions as their gain media.

<span class="mw-page-title-main">Organic photonics</span>

Organic photonics includes the generation, emission, transmission, modulation, signal processing, switching, amplification, and detection/sensing of light, using organic optical materials.

<span class="mw-page-title-main">Yuriy Reznikov</span> Ukrainian physicist

Yuriy Reznikov was a Ukrainian physicist, Head of the Department of Crystals at NASU Institute of Physics and a world-renown expert in the field of liquid crystals. He is known for his work on photoalignment, "giant" optical non-linearity of liquid crystals and nano-colloids.

<span class="mw-page-title-main">Pr:YLF laser</span> Type of solid-state laser

A Pr:YLF laser (or Pr3+:LiYF4 laser) is a solid state laser that uses a praseodymium doped yttrium-lithium-fluoride crystal as its gain medium. The first Pr:YLF laser was built in 1977 and emitted pulses at 479 nm. Pr:YLF lasers can emit in many different wavelengths in the visible spectrum of light, making them potentially interesting for RGB applications and materials processing. Notable emission wavelengths are 479 nm, 523 nm, 607 nm and 640 nm.

<span class="mw-page-title-main">Baruch Fischer</span> Israeli professor of electro-optics

Baruch Fischer is an Israeli optical physicist and Professor Emeritus in the Andrew and Erna Viterbi Faculty of Electrical and Computer Engineering of the Technion, where he was the Max Knoll Chair in Electro-Optics and Electronics.

References

  1. 1 2 Woltman 2007, p. 357
  2. Jacobs; Cerqua; Marshall; Schmid; Guardalben; Skerrett (1988). "Liquid-crystal laser optics: design, fabrication, and performance". Journal of the Optical Society of America B. 5 (9): 1962. Bibcode:1988JOSAB...5.1962J. doi:10.1364/JOSAB.5.001962.
  3. Kogelnik, H.; C.V. Shank (1971). "Stimulated emission in a periodic structure". Applied Physics Letters. 18 (4): 152. Bibcode:1971ApPhL..18..152K. doi:10.1063/1.1653605.
  4. Kukhtarev, NV (1978). "Cholesteric liquid crystal laser with distributed feedback". Soviet Journal of Quantum Electronics. 8 (6): 774–776. Bibcode:1978QuEle...8..774K. doi:10.1070/QE1978v008n06ABEH010397.
  5. 1 2 Ilchishin, I.P.; E.A. Tikhonov; V.G. Tishchenko; M.T. Shpak (1980). "Generation of a tunable radiation by impurity cholesteric liquid crystals". Journal of Experimental and Theoretical Physics Letters. 32: 24–27. Bibcode:1980JETPL..32...24I.
  6. Woltman 2007, p. 310
  7. 1 2 Kopp, V.I.; B. Fan; H. K. M. Vithana; A. Z. Genack (1998). "Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals". Optics Express. 23 (21): 1707–1709. Bibcode:1998OptL...23.1707K. doi:10.1364/OL.23.001707. PMID   18091891. S2CID   17966093.
  8. 1 2 Dolgaleva, Ksenia; Simon K.H. Wei; Svetlana G. Lukishova; Shaw H. Chen; Katie Schwertz; Robert W. Boyd (2008). "Enhanced laser performance of cholesteric liquid crystals doped with oligofluorene dye". Journal of the Optical Society of America. 25 (9): 1496–1504. Bibcode:2008JOSAB..25.1496D. doi:10.1364/JOSAB.25.001496.
  9. Lawrence Goldberg and Joel Schnur Tunable internal-feedback liquid crystal-dye laser U.S. Patent 3,771,065 Issue date: 1973
  10. Kuroda, Keiji; Tsutomu Sawada; Takashi Kuroda; Kenji Watanabe; Kazuaki Sakoda (2009). "Doubly enhanced spontaneous emission due to increased photon density of states at photonic band edge frequencies". Optics Express. 17 (15): 13168–13177. Bibcode:2009OExpr..1713168K. doi: 10.1364/OE.17.013168 . PMID   19654722.
  11. 1 2 Yablonovich, Eli (1987). "Inhibited Spontaneous Emission in Solid-State Physics and Electronics". Physical Review Letters. 58 (20): 2059–2062. Bibcode:1987PhRvL..58.2059Y. doi: 10.1103/PhysRevLett.58.2059 . PMID   10034639.
  12. Lucchetti, L.; M. Di Fabrizio; O. Francescangeli; F. Simoni (2004). "Colossal optical nonlinearity in dye doped liquid crystals". Optics Communications. 233 (4–6): 417–424. Bibcode:2004OptCo.233..417L. doi:10.1016/j.optcom.2004.01.057.
  13. Khoo, I.C. (1995). "Holographic grating formation in dye- and fullerene C60-doped nematic liquid-crystal film". Optics Letters. 20 (20): 2137–2139. Bibcode:1995OptL...20.2137K. doi:10.1364/OL.20.002137. PMID   19862276.
  14. Khoo, Iam-Choo (2007). Liquid Crystals. Wiley-Interscience. ISBN   978-0-471-75153-3.
  15. 1 2 Morris, Stephen M.; Philip JW Hands; Sonja Findeisen-Tandel; Robert H. Cole; Timothy D. Wilkinson; Harry J. Coles (2008). "Polychromatic liquid crystal laser arrays towards display applications" (PDF). Optics Express. 16 (23): 18827–37. Bibcode:2008OExpr..1618827M. doi: 10.1364/OE.16.018827 . PMID   19581971.
  16. Maune, Brett; Marko Lončar; Jeremy Witzens; Michael Hochberg; Thomas Baehr-Jones; Demetri Psaltis; Axel Scherer; Yueming Qiu (2004). "Liquid-crystal electric tuning of a photonic crystal laser" (PDF). Applied Physics Letters. 85 (3): 360. Bibcode:2004ApPhL..85..360M. doi:10.1063/1.1772869.
  17. Furumi, Seiichi; Shiyoshi Yokoyama; Akira Otomo; Shinro Mashiko (2004). "Phototunable photonic bandgap in chiral liquid crystal device". Applied Physics Letters. 84 (14): 2491. Bibcode:2004ApPhL..84.2491F. doi:10.1063/1.1699445.
  18. Andy, Fuh; Tsung-Hsien Lin; J.-H. Liu; F.-C. Wu (2004). "Lasing in chiral photonic liquid crystals and associated frequency tuning". Optics Express. 12 (9): 1857–1863. Bibcode:2004OExpr..12.1857F. doi: 10.1364/OPEX.12.001857 . PMID   19475016.
  19. Khoo, Iam-Choo; Wu, Shin-Tson (1993). Optics and nonlinear optics of liquid crystals. World Scientific. ISBN   978-981-02-0934-6.
  20. Morris, S.M.; A. D. Ford; M. N. Pivnenko; H. J. Coles (2005). "Enhanced emission from liquid-crystal lasers". Journal of Applied Physics. 97 (2): 023103–023103–9. Bibcode:2005JAP....97b3103M. doi:10.1063/1.1829144.
  21. Morris, SM; AD Ford; HJ Coles (July 2009). "Removing the discontinuous shifts in emission wavelength of a chiral nematic liquid crystal laser". Journal of Applied Physics. 106 (2): 023112–023112–4. Bibcode:2009JAP...106b3112M. doi:10.1063/1.3177251.
  22. Ozaki, M.; M. Kasano; D. Ganzke; W. Haase; K. Yoshino (2002). "Mirrorless lasing in a dye-doped ferroelectric liquid crystal". Advanced Materials. 14 (4): 306–309. doi:10.1002/1521-4095(20020219)14:4<306::AID-ADMA306>3.0.CO;2-1.
  23. Huang, Yuhua; Ying Zhou; Shin-Tson Wu (2006). "Spatially tunable laser emission in dye-doped photonic liquid crystals". Applied Physics Letters. 88 (1): 011107. Bibcode:2006ApPhL..88a1107H. doi:10.1063/1.2161167. S2CID   119500768.
  24. Jeong, Mi-Yun; Hyunhee Choi; J. W. Wu (2008). "Spatial tuning of laser emission in a dye-doped cholesteric liquid crystal wedge cell". Applied Physics Letters. 92 (5): 051108. Bibcode:2008ApPhL..92e1108J. doi:10.1063/1.2841820.
  25. Woltman 2007, pp. 332–334
  26. Schmidtke, Jürgen; Werner Stille; Heino Finkelmann (2003). "Defect Mode Emission of a Dye Doped Cholesteric Polymer Network" (PDF). Physical Review Letters. 90 (8): 083902. Bibcode:2003PhRvL..90h3902S. doi:10.1103/PhysRevLett.90.083902. PMID   12633428 . Retrieved 2011-04-29.
  27. Lee, C.-R.; Lin, S.-H.; Yeh, H.-C.; Ji, T.-D. (7 December 2009). "Band-tunable color cone lasing emission based on dye-doped cholesteric liquid crystals with various pitches and a pitch gradient" (PDF). Optics Express. 17 (25): 22616–23. Bibcode:2009OExpr..1722616L. doi: 10.1364/oe.17.022616 . PMID   20052187.
  28. 1 2 "Liquid crystal lasers the size of a human hair". Physorg. December 2005. Retrieved 2011-04-09.
  29. "Liquid crystal lasers promise cheaper, high colour resolution laser television". Physorg. April 2009. Retrieved 2011-04-09.
  30. "Laser Displays: liquid-crystal laser promises low-fabrication-cost display". Laser Focus World. January 2009. Retrieved 2011-04-09.
  31. Palffy-Muhoray, Peter; Wenyi Cao; Michele Moreira; Bahman Taheri; Antonio Munoz (2006). "Photonics and lasing in liquid crystal materials". Philosophical Transactions of the Royal Society A. 364 (1847): 2747–2761. Bibcode:2006RSPTA.364.2747P. doi:10.1098/rsta.2006.1851. PMID   16973487. S2CID   20644720.

Bibliography

Further reading