Lockheed DC-130

Last updated

DC-130 Hercules
DC-130A VC-3 with BQM-34S in flight 1976.JPEG
A U.S. Navy DC-130A preparing to launch BQM-34 Firebee target drones.
RoleDrone control aircraft
National originUnited States
Manufacturer Lockheed
Primary users United States Air Force
United States Navy
Developed from Lockheed C-130 Hercules

The Lockheed DC-130 is a variant of the C-130 Hercules modified for drone control. It can carry four Ryan Firebee drones underneath its wings.

Contents

Development

Origin of the design

Since World War I, many nations' air forces have investigated different means of remotely controlling aircraft. Spurred by the 1960 U-2 incident, the United States Air Force gained a renewed interest in using unmanned aerial vehicles (UAV), or drones, to obtain intelligence on the SA-2 Guideline surface-to-air missile system. Under the code names "Lightning Bug" and "Compass Cookie", Firebee target drones were modified for reconnaissance as the Ryan Model 147. The drones were test flown over North Korea and China after the Gulf of Tonkin incident in August 1964.

While perfect for reconnaissance, the use of a ground-based radar van for command, track and control limit the combat ability of drones. The team controlling the drones was also limited to a single, stationary recovery area. To improve range and recoverability of the drones, beginning in 1957 some C-130As were modified to carry the drones on underwing pylons and were re-designated as GC-130, MC-130 or DC-130.

Operational use

The Strategic Air Command (SAC) initially operated DC-130s assigned to its 100th Strategic Reconnaissance Wing (100 SRW) at Davis–Monthan AFB, Arizona from 1966 through 1976. In 1976, the 100th's DC-130s and drone assets were transferred to the 432nd Tactical Drone Group of Tactical Air Command (TAC) at Davis–Monthan AFB. Concurrent with this action, the 100 SRW's U-2 aircraft assets were transferred to the 9th Strategic Reconnaissance Wing (9 SRW) and merged with the latter's SR-71 aircraft assets at Beale AFB, California. The 100 SRW was then re-designated as the 100th Air Refueling Wing (100 ARW) and relocated to Beale AFB, operating KC-135 Stratotanker aircraft, until its later reassignment to its current home of RAF Mildenhall, United Kingdom.

In the drone carrier role, target or strike (weapons carrier) drones were carried on two pylons located under each wing of the DC-130: one between the engines and one outboard of the engines. This allowed the DC-130 to carry and control four drones simultaneously. Strike drones were never deployed operationally and only reconnaissance and electric warfare drone types were used in the field.

DC-130s could launch, track and control the drones. The aircraft contained two launch stations (one for each drone) from which all systems on the drone were activated and checked. From those stations the engines were started, run through their checks and stabilized at the correct power setting for launch. A two-man station, just aft of the flight compartment, contained all the tracking and control functions. Instruments displayed all data transmitted from the drone—such as heading, speed, altitude, power setting and flight attitudes. Navigation and tracking data were fed to a system that plotted the current position of both the drone and DC-130 on a large map board in front of the operators. The planned track of the drone was drawn on the board, which enabled the crew to immediately detect any deviation in the drone's flight path. The drone controllers monitored and recorded video data from drones equipped with television cameras and recorded any other data collected by other special-purpose drones.

The DC-130 was used in both the development and proposed employment of the AQM-91A Compass Arrow [1] in the late 1960s and early 1970s, as well as Senior Prom, a program to develop stealthy cruise missiles in 1978.

Reconnaissance drones were much larger and heavier than target drones or strike drones, meaning the DC-130As could only carry one reconnaissance drone pylon under each wing. Each drone pylon was placed between the engines, replacing the auxiliary fuel tank on earlier models. When a select number of C-130E aircraft were converted to drone carriers as DC-130Es for USAF, they retained the underwing tanks and the drone pylons were installed outboard of the engines. The DC-130Es also differed from the DC-130As in having a chin radome containing a microwave guidance system in addition to the nose thimble radome which housed tracking radar. [2] Introduction of the DC-130E significantly increased the capability and endurance of the U.S. Air Force DC-130 fleet. Concurrent with the USAF transition to the DC-130E, the extant DC-130As were transferred to the U.S. Navy for target drone carrier and control operations in the Navy's Southern California Operating Area (SOCAL OpArea). Assigned to Fleet Composite Squadron Three (VC-3), [3] the squadron flew missions originally from NAS North Island in San Diego, California and later from NAS Point Mugu in Ventura County, California.

The DC-130H project was tested at Hill Air Force Base, Utah with the 6514th Test Squadron. This aircraft was designed to carry and deploy up to four drones; it could also provide control for up to 16 drones simultaneously. With the end of the Vietnam war and consequent decline in need for combat drones, only one C-130H aircraft was converted for the project. [2]

DC-130A drone control aircraft carrying two BQM-34S Firebee target drones under its wing. DC-130 mounted Firebees DN-SC-85-06043.jpg
DC-130A drone control aircraft carrying two BQM-34S Firebee target drones under its wing.

The drones

The Q-2C/BQM-34A Firebee target drone was modified for the reconnaissance mission and designated AQM-34 or Ryan Model 147. Its size was increased to enhance range and payload. For the low altitude mission, wingspan was increased to 15 feet (4.6 m) and later to 27 feet (8.2 m), but was most successful with the original 13 feet (4.0 m) wingspan. Wing spans of 27 and 33 feet (8.2 and 10.1 m) were used for the high altitude aircraft. The original 1,700 pounds-force (7.6 kN) of engine thrust was increased to 1,920 lbf (8.5 kN) and later to 2,800 lbf (12 kN) for the high altitude, long range drones. Some models were equipped with wing-mounted fuel tanks to extend their range.

The drones had multiple navigation systems including inertial, Doppler, and LORAN. They were equipped with an analogue computer which controlled speed, altitude, heading, engine settings, sensors and recovery systems. The computer turned all sensors on and off and directed all turns, climbs, dives (as well as the rate of each) and engine power settings. Depending upon a drone's designated mission, the equipment also included:

Sensors included various cameras to satisfy the many different objectives of both low- and high-altitude sorties. These could be fixed, turreted, or scanning horizon-to-horizon film cameras; some provided fine detail of specific targets while others covered large areas. TV cameras that could be zoomed and panned were also installed.

Numerous electronic receivers were built in to the drones. These were designed to intercept communications signals and transmissions of all sorts including radars, data links and ECM. The intercepted data was then transmitted to other aircraft, ground sites or satellites. Some of the receivers could be tuned by an operator in another airplane or on the ground. The function of some receivers was strictly defensive. When they detected and identified a signal as a threat, they would trigger a jamming signal, dispense chaff and/or initiate defensive maneuvers.

The drones had a recovery system and receivers which permitted overriding of the mission program and flying the drone 'by hand'. The recovery sequence was triggered by the flight control computer at the preset position, unless overridden by the Drone Recovery Officer (DRO) in the control vehicle. Normally the drone was picked up by radar as it approached the recovery area and controlled by the DRO. Last minute course corrections were made as necessary and the recovery sequence triggered at the precise point to drop the drone on top of the waiting recovery helicopter. The on-board recovery system consisted of a servomechanism that shut down the engine, deployed a drag chute (to cause the drone to nose over) and opened the main parachute at a preset altitude. The recovery helicopter then flew over the main chute engaging a reinforced catch chute with a set of trailing hooks attached to an internal winch. The drone was then winched up to just below the recovery helicopter and flown back to base. An alternative method of recovery allowed the drone to reach the ground under the main chute. On ground impact a sensor operated a charge that severed the chute risers allowing the drone to be recovered. This method had a higher likelihood of damage and was not preferred.

The DC-130 program was eventually discontinued in the early 2000s, as it was deemed too expensive to support. Launching a single drone required the maintenance and support for the DC-130, the drones, and (unless the drone was permanently expended during a live-fire missile shoot) the drone recovery helicopters such as USN SH-3 or USAF CH-3E and CH-53.

At the outset of the 2003 invasion of Iraq, a U.S. Navy-flown DC-130 dropped three modified Firebees borrowed from the U.S. Air Force. Two other drones were ground-launched. The unmanned aircraft flew over Baghdad spooling out clouds of chaff until they ran out of fuel and crashed; they led the flights of Tomahawk cruise missiles which devastated Baghdad.

Operators

Flag of the United States.svg  United States

Specifications

See also

Related development

Aircraft of comparable role, configuration, and era

Related Research Articles

<span class="mw-page-title-main">Lockheed AC-130</span> Gunship aircraft series by Lockheed

The Lockheed AC-130 gunship is a heavily armed, long-endurance, ground-attack variant of the C-130 Hercules transport, fixed-wing aircraft. It carries a wide array of ground-attack weapons that are integrated with sophisticated sensors, navigation, and fire-control systems. Unlike other modern military fixed-wing aircraft, the AC-130 relies on visual targeting. Since its large profile and low operating altitudes around 7,000 feet make it an easy target, its close air support missions are usually flown at night.

<span class="mw-page-title-main">Lockheed C-130 Hercules</span> American military transport aircraft

The Lockheed C-130 Hercules is an American four-engine turboprop military transport aircraft designed and built by Lockheed. Capable of using unprepared runways for takeoffs and landings, the C-130 was originally designed as a troop, medevac, and cargo transport aircraft. The versatile airframe has found uses in other roles, including as a gunship (AC-130), for airborne assault, search and rescue, scientific research support, weather reconnaissance, aerial refueling, maritime patrol, and aerial firefighting. It is now the main tactical airlifter for many military forces worldwide. More than 40 variants of the Hercules, including civilian versions marketed as the Lockheed L-100, operate in more than 60 nations.

<span class="mw-page-title-main">Lockheed EC-130</span> 1975 electronic warfare aircraft series by Lockheed

The Lockheed Martin EC-130 series comprises several slightly different versions of the Lockheed C-130 Hercules that have been and continue to be operated by the U.S. Air Force and, until the 1990s, the U.S. Navy.

<span class="mw-page-title-main">Lockheed WC-130</span> Weather aircraft series by Lockheed

The Lockheed WC-130 is a high-wing, medium-range aircraft used for weather reconnaissance missions by the United States Air Force. The aircraft is a modified version of the C-130 Hercules transport configured with specialized weather instrumentation including a dropsonde deployment/receiver system and crewed by a meteorologist for penetration of tropical cyclones and winter storms to obtain data on movement, size and intensity.

<span class="mw-page-title-main">Lockheed HC-130</span> Search and rescue aircraft version of the C-130 Hercules

The Lockheed HC-130 is an extended-range, search and rescue (SAR)/combat search and rescue (CSAR) version of the C-130 Hercules military transport aircraft, with two different versions operated by two separate services in the U.S. armed forces.

<span class="mw-page-title-main">Lockheed D-21</span> 1962 American Mach 3+ reconnaissance drone

The Lockheed D-21 is an American supersonic reconnaissance drone. The D-21 was initially designed to be launched from the back of an M-21 carrier aircraft, a variant of the Lockheed A-12 aircraft. The drone had maximum speed in excess of Mach 3.3 at an operational altitude of 90,000 feet. Development began in October 1962. Originally known by the Lockheed designation Q-12, the drone was intended for reconnaissance deep into enemy airspace.

<span class="mw-page-title-main">Lockheed X-7</span> Experimental aircraft to test ramjet engines and missile guidance technology

The Lockheed X-7 was an American unmanned test bed of the 1950s for ramjet engines and missile guidance technology. It was the basis for the later Lockheed AQM-60 Kingfisher, a system used to test American air defenses against nuclear missile attack.

<span class="mw-page-title-main">Mid-air retrieval</span>

Mid-air retrieval is a technique used in atmospheric reentry when the reentering vehicle is incapable of a satisfactory unassisted landing. The vehicle is slowed by means of parachutes, and then a specially-equipped aircraft matches the vehicle's trajectory and catches it in mid-air.

<span class="mw-page-title-main">Northrop AQM-35</span> Supersonic drone

The AQM-35 was a supersonic target drone produced by the Northrop Corporation.

<span class="mw-page-title-main">100th Air Refueling Wing</span> US Air Force unit

The 100th Air Refueling Wing, nicknamed the Bloody Hundredth, is a United States Air Force unit assigned to the Third Air Force, United States Air Forces in Europe – Air Forces Africa. It is stationed at RAF Mildenhall, Suffolk, United Kingdom. It is also the host wing at RAF Mildenhall.

<span class="mw-page-title-main">History of unmanned aerial vehicles</span>

UAVs include both autonomous drones and remotely piloted vehicles (RPVs). A UAV is capable of controlled, sustained level flight and is powered by a jet, reciprocating, or electric engine. In the twenty first century technology reached a point of sophistication that the UAV is now being given a greatly expanded role in many areas of aviation.

<span class="mw-page-title-main">Ryan Model 147</span> Jet-powered drone

The Ryan Model 147 Lightning Bug is a jet-powered drone, or unmanned aerial vehicle, produced and developed by Ryan Aeronautical from the earlier Ryan Firebee target drone series.

<span class="mw-page-title-main">Ryan Firebee</span> Series of target drones

The Ryan Firebee is a series of target drones developed by the Ryan Aeronautical Company beginning in 1951. It was one of the first jet-propelled drones, and remains one of the most widely used target drones ever built.

<span class="mw-page-title-main">Ryan AQM-91 Firefly</span> Type of aircraft

The Ryan AQM-91 Firefly was a developmental drone developed during the Vietnam War to perform long-range reconnaissance, especially into China.

<span class="mw-page-title-main">11th Attack Squadron</span> Military unit

The 11th Attack Squadron is a United States Air Force unit assigned to the 432d Wing Air Combat Command at Creech Air Force Base near Indian Springs, Nevada. It flies General Atomics MQ-9 Reaper Unmanned aerial vehicles. In 1995 the 11th became the first Remotely Piloted Aircraft (RPA) squadron in the Air Force.

<span class="mw-page-title-main">514th Flight Test Squadron</span> Military unit

The 514th Flight Test Squadron is a squadron of the United States Air Force, which has been stationed at Hill Air Force Base, Utah since 1973, performing functional flight checks on aircraft undergoing major maintenance.

<span class="mw-page-title-main">556th Test and Evaluation Squadron</span> Military unit

The 556th Test and Evaluation Squadron is a United States Air Force unit. It is assigned to the 53d Test and Evaluation Group at Creech Air Force Base, Nevada, and conducts unmanned aircraft testing.

<span class="mw-page-title-main">4080th Strategic Reconnaissance Wing</span> Military unit

The 4080th Strategic Reconnaissance Wing is a discontinued United States Air Force (USAF) wing last assigned to the 12th Strategic Aerospace Division of Strategic Air Command (SAC) at Davis–Monthan AFB, Arizona. It was SAC's high altitude reconnaissance wing for its existence and was the first USAF wing to operate the Lockheed U-2. It was discontinued as part of a program to replace operational units controlled by major commands with those controlled by USAF whose lineages could be continued.

The 4028th Strategic Reconnaissance Squadron was a component of the 4080th Strategic Reconnaissance Wing, Strategic Air Command, that operated Lockheed U-2 spy planes out of Laughlin AFB, Texas, and Davis–Monthan AFB, Arizona, in the late 1950s and early 1960s. The unit is also sometimes referred to as the 4028th Strategic Reconnaissance Weather Squadron. It was from this unit that the pilots involved in overflights of Cuba during the Cuban Missile Crisis were drawn. Detachments of the 4028th were deployed to Japan and South Vietnam.

<span class="mw-page-title-main">2018 U.S. Air National Guard C-130 crash</span> Us air crash in 2018

On May 2, 2018, a Lockheed WC-130H transport aircraft of the Puerto Rico Air National Guard crashed in the US state of Georgia, shortly after departing from Savannah Air National Guard Base. The aircraft crashed on Georgia State Route 21 at 11:26 local time. All nine airmen were killed in the accident. All nine were members of the Puerto Rico Air National Guard.

References

  1. "Teledyne-Ryan AQM-91A Compass Arrow".
  2. 1 2 Bowman, Martin. Lockheed C-130 Hercules (The Crowood Press, Ltd 1999).
  3. "C-130 Units – US Navy".

Commons-logo.svg Media related to Lockheed DC-130 Hercules at Wikimedia Commons