MDM4

Last updated
MDM4
Protein MDM4 PDB 2cr8.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases MDM4 , HDMX, MDMX, MRP1, p53 regulator, MDM4 regulator of p53, BMFS6
External IDs OMIM: 602704 MGI: 107934 HomoloGene: 1794 GeneCards: MDM4
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_008575
NM_001302801
NM_001302802
NM_001302803
NM_001302804

RefSeq (protein)

NP_001289730
NP_001289731
NP_001289732
NP_001289733
NP_032601

Location (UCSC) Chr 1: 204.52 – 204.56 Mb Chr 1: 132.89 – 132.96 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Protein Mdm4 is a protein that in humans is encoded by the MDM4 gene. [5] [6]

Function

The human MDM4 gene, which plays a role in apoptosis, encodes a 490-amino acid protein containing a RING finger domain and a putative nuclear localization signal. The MDM4 putative nuclear localization signal, which all Mdm proteins contain, is located in the C-terminal region of the protein. The mRNA is expressed at a high level in thymus and at lower levels in all other tissues tested. MDM4 protein produced by in vitro translation interacts with p53 via a binding domain located in the N-terminal region of the MDM4 protein. MDM4 shows significant structural similarity to p53-binding protein MDM2 [6]

Interactions

MDM4 has been shown to interact with E2F1, [7] Mdm2 [8] [9] [10] [11] and P53. [5] [10]

Related Research Articles

p53 Mammalian protein found in Homo sapiens

p53, also known as Tumor protein P53, cellular tumor antigen p53, or transformation-related protein 53 (TRP53) is a regulatory protein that is often mutated in human cancers. The p53 proteins are crucial in vertebrates, where they prevent cancer formation. As such, p53 has been described as "the guardian of the genome" because of its role in conserving stability by preventing genome mutation. Hence TP53 is classified as a tumor suppressor gene.

<span class="mw-page-title-main">ABL (gene)</span> Human protein-coding gene on chromosome 9

Tyrosine-protein kinase ABL1 also known as ABL1 is a protein that, in humans, is encoded by the ABL1 gene located on chromosome 9. c-Abl is sometimes used to refer to the version of the gene found within the mammalian genome, while v-Abl refers to the viral gene, which was initially isolated from the Abelson murine leukemia virus.

<span class="mw-page-title-main">EP300</span> Protein-coding gene in the species Homo sapiens

Histone acetyltransferase p300 also known as p300 HAT or E1A-associated protein p300 also known as EP300 or p300 is an enzyme that, in humans, is encoded by the EP300 gene. It functions as histone acetyltransferase that regulates transcription of genes via chromatin remodeling by allowing histone proteins to wrap DNA less tightly. This enzyme plays an essential role in regulating cell growth and division, prompting cells to mature and assume specialized functions (differentiate), and preventing the growth of cancerous tumors. The p300 protein appears to be critical for normal development before and after birth.

<span class="mw-page-title-main">Mdm2</span> Protein-coding gene in the species Homo sapiens

Mouse double minute 2 homolog (MDM2) also known as E3 ubiquitin-protein ligase Mdm2 is a protein that in humans is encoded by the MDM2 gene. Mdm2 is an important negative regulator of the p53 tumor suppressor. Mdm2 protein functions both as an E3 ubiquitin ligase that recognizes the N-terminal trans-activation domain (TAD) of the p53 tumor suppressor and as an inhibitor of p53 transcriptional activation.

<span class="mw-page-title-main">PCAF</span> Protein-coding gene in the species Homo sapiens

P300/CBP-associated factor (PCAF), also known as K(lysine) acetyltransferase 2B (KAT2B), is a human gene and transcriptional coactivator associated with p53.

<span class="mw-page-title-main">E2F1</span> Protein-coding gene in the species Homo sapiens

Transcription factor E2F1 is a protein that in humans is encoded by the E2F1 gene.

<span class="mw-page-title-main">60S ribosomal protein L5</span> Protein found in humans

60S ribosomal protein L5 is a protein that in humans is encoded by the RPL5 gene.

<span class="mw-page-title-main">PIAS4</span> Protein-coding gene in the species Homo sapiens

E3 SUMO-protein ligase PIAS4 is one of several protein inhibitor of activated STAT (PIAS) proteins. It is also known as protein inhibitor of activated STAT protein gamma, and is an enzyme that in humans is encoded by the PIAS4 gene.

<span class="mw-page-title-main">DNAJA3</span> Protein-coding gene in the species Homo sapiens

DnaJ homolog subfamily A member 3, mitochondrial, also known as Tumorous imaginal disc 1 (TID1), is a protein that in humans is encoded by the DNAJA3 gene on chromosome 16. This protein belongs to the DNAJ/Hsp40 protein family, which is known for binding and activating Hsp70 chaperone proteins to perform protein folding, degradation, and complex assembly. As a mitochondrial protein, it is involved in maintaining membrane potential and mitochondrial DNA (mtDNA) integrity, as well as cellular processes such as cell movement, growth, and death. Furthermore, it is associated with a broad range of diseases, including neurodegenerative diseases, inflammatory diseases, and cancers.

<span class="mw-page-title-main">CTBP1</span> Protein-coding gene in the species Homo sapiens

C-terminal-binding protein 1 also known as CtBP1 is a protein that in humans is encoded by the CTBP1 gene. CtBP1 is one of two CtBP proteins, the other protein being CtBP2.

<span class="mw-page-title-main">PIAS1</span> Protein-coding gene in the species Homo sapiens

E3 SUMO-protein ligase PIAS1 is an enzyme that in humans is encoded by the PIAS1 gene.

<span class="mw-page-title-main">GADD45A</span> Protein-coding gene in the species Homo sapiens

Growth arrest and DNA-damage-inducible protein GADD45 alpha is a protein that in humans is encoded by the GADD45A gene.

<span class="mw-page-title-main">TNFAIP3</span> Protein-coding gene in the species Homo sapiens

Tumor necrosis factor, alpha-induced protein 3 or A20 is a protein that in humans is encoded by the TNFAIP3 gene.

<span class="mw-page-title-main">TAF9</span> Protein-coding gene in the species Homo sapiens

TAF9 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 32kDa, also known as TAF9, is a protein that in humans is encoded by the TAF9 gene.

<span class="mw-page-title-main">FOXO4</span> Protein

Forkhead box protein O4 is a protein that in humans is encoded by the FOXO4 gene.

<span class="mw-page-title-main">PLK3</span> Protein-coding gene in the species Homo sapiens

Polo-like kinase 3 (Drosophila), also known as PLK3, is an enzyme which in humans is encoded by the PLK3 gene.

<span class="mw-page-title-main">MDC1</span> Protein-coding gene in the species Homo sapiens

Mediator of DNA damage checkpoint protein 1 is a 2080 amino acid long protein that in humans is encoded by the MDC1 gene located on the short arm (p) of chromosome 6. MDC1 protein is a regulator of the Intra-S phase and the G2/M cell cycle checkpoints and recruits repair proteins to the site of DNA damage. It is involved in determining cell survival fate in association with tumor suppressor protein p53. This protein also goes by the name Nuclear Factor with BRCT Domain 1 (NFBD1).

<span class="mw-page-title-main">UBE2D1</span> Protein-coding gene in the species Homo sapiens

Ubiquitin-conjugating enzyme E2 D1 is a protein that in humans is encoded by the UBE2D1 gene.

<span class="mw-page-title-main">60S ribosomal protein L11</span> Protein found in humans

60S ribosomal protein L11 is a protein that in humans is encoded by the RPL11 gene.

<span class="mw-page-title-main">PATZ1</span> Protein-coding gene in the species Homo sapiens

POZ-, AT hook-, and zinc finger-containing protein 1 is a protein that in humans is encoded by the PATZ1 gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000198625 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000054387 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 Shvarts A, Bazuine M, Dekker P, Ramos YF, Steegenga WT, Merckx G, van Ham RC, van der Houven van Oordt W, van der Eb AJ, Jochemsen AG (Sep 1997). "Isolation and identification of the human homolog of a new p53-binding protein, Mdmx" (PDF). Genomics. 43 (1): 34–42. doi:10.1006/geno.1997.4775. hdl: 2066/26148 . PMID   9226370. S2CID   11794685.
  6. 1 2 "Entrez Gene: MDM4 Mdm4, transformed 3T3 cell double minute 4, p53 binding protein (mouse)".
  7. Strachan GD, Jordan-Sciutto KL, Rallapalli R, Tuan RS, Hall DJ (Feb 2003). "The E2F-1 transcription factor is negatively regulated by its interaction with the MDMX protein". J. Cell. Biochem. 88 (3): 557–68. doi:10.1002/jcb.10318. PMID   12532331. S2CID   38805122.
  8. Kadakia M, Brown TL, McGorry MM, Berberich SJ (Dec 2002). "MdmX inhibits Smad transactivation". Oncogene. 21 (57): 8776–85. doi:10.1038/sj.onc.1205993. PMID   12483531. S2CID   38919290.
  9. Tanimura S, Ohtsuka S, Mitsui K, Shirouzu K, Yoshimura A, Ohtsubo M (Mar 1999). "MDM2 interacts with MDMX through their RING finger domains". FEBS Lett. 447 (1): 5–9. doi:10.1016/S0014-5793(99)00254-9. PMID   10218570. S2CID   20021952.
  10. 1 2 Badciong JC, Haas AL (Dec 2002). "MdmX is a RING finger ubiquitin ligase capable of synergistically enhancing Mdm2 ubiquitination". J. Biol. Chem. 277 (51): 49668–75. doi: 10.1074/jbc.M208593200 . PMID   12393902.
  11. Linke K, Mace PD, Smith CA, Vaux DL, Silke J, Day CL (May 2008). "Structure of the MDM2/MDMX RING domain heterodimer reveals dimerization is required for their ubiquitylation in trans". Cell Death Differ. 15 (5): 841–8. doi: 10.1038/sj.cdd.4402309 . PMID   18219319.

Further reading