Metrics (networking)

Last updated

Router metrics are configuration values used by a router to make routing decisions. A metric is typically one of many fields in a routing table. Router metrics help the router choose the best route among multiple feasible routes to a destination. The route will go in the direction of the gateway with the lowest metric.

Contents

A router metric is typically based on information such as path length, bandwidth, load, hop count, path cost, delay, maximum transmission unit (MTU), reliability and communications cost.

Examples

A metric can include:

In EIGRP, metrics is represented by an integer from 0 to 4,294,967,295 (The size of a 32-bit integer). In Microsoft Windows XP routing it ranges from 1 to 9999.

A metric can be considered as: [1]

Service level metrics

Router metrics are metrics used by a router to make routing decisions. It is typically one of many fields in a routing table.

Router metrics can contain any number of values that help the router determine the best route among multiple routes to a destination. A router metric typically based on information like path length, bandwidth, load, hop count, path cost, delay, MTU, reliability and communications cost.

See also

Related Research Articles

Interior Gateway Routing Protocol (IGRP) is a distance vector interior gateway protocol (IGP) developed by Cisco. It is used by routers to exchange routing data within an autonomous system.

In computer networking, the maximum transmission unit (MTU) is the size of the largest protocol data unit (PDU) that can be communicated in a single network layer transaction. The MTU relates to, but is not identical to the maximum frame size that can be transported on the data link layer, e.g., Ethernet frame.

Routing is the process of selecting a path for traffic in a network or between or across multiple networks. Broadly, routing is performed in many types of networks, including circuit-switched networks, such as the public switched telephone network (PSTN), and computer networks, such as the Internet.

Network throughput refers to the rate of message delivery over a communication channel, such as Ethernet or packet radio, in a communication network. The data that these messages contain may be delivered over physical or logical links, or through network nodes. Throughput is usually measured in bits per second, and sometimes in data packets per second or data packets per time slot.

A network switch is networking hardware that connects devices on a computer network by using packet switching to receive and forward data to the destination device.

Heuristic routing is a system used to describe how deliveries are made when problems in a network topology arise. Heuristic is an adjective used in relation to methods of learning, discovery, or problem solving. Routing is the process of selecting paths to specific destinations. Heuristic routing is used for traffic in the telecommunications networks and transport networks of the world.

Open Shortest Path First (OSPF) is a routing protocol for Internet Protocol (IP) networks. It uses a link state routing (LSR) algorithm and falls into the group of interior gateway protocols (IGPs), operating within a single autonomous system (AS).

The Routing Information Protocol (RIP) is one of the oldest distance-vector routing protocols which employs the hop count as a routing metric. RIP prevents routing loops by implementing a limit on the number of hops allowed in a path from source to destination. The largest number of hops allowed for RIP is 15, which limits the size of networks that RIP can support.

Enhanced Interior Gateway Routing Protocol (EIGRP) is an advanced distance-vector routing protocol that is used on a computer network for automating routing decisions and configuration. The protocol was designed by Cisco Systems as a proprietary protocol, available only on Cisco routers. In 2013, Cisco permitted other vendors to freely implement a limited version of EIGRP with some of its associated features such as High Availability (HA), while withholding other EIGRP features such as EIGRP stub, needed for DMVPN and large-scale campus deployment. Information needed for implementation was published with informational status as RFC 7868 in 2016, which did not advance to Internet Standards Track level, and allowed Cisco to retain control of the EIGRP protocol.

Network planning and design is an iterative process, encompassing topological design, network-synthesis, and network-realization, and is aimed at ensuring that a new telecommunications network or service meets the needs of the subscriber and operator. The process can be tailored according to each new network or service.

In telecommunications and computer networking, connection-oriented communication is a communication protocol where a communication session or a semi-permanent connection is established before any useful data can be transferred. The established connection ensures that data is delivered in the correct order to the upper communication layer. The alternative is called connectionless communication, such as the datagram mode communication used by Internet Protocol (IP) and User Datagram Protocol (UDP), where data may be delivered out of order, since different network packets are routed independently and may be delivered over different paths.

Avionics Full-Duplex Switched Ethernet (AFDX), also ARINC 664, is a data network, patented by international aircraft manufacturer Airbus, for safety-critical applications that utilizes dedicated bandwidth while providing deterministic quality of service (QoS). AFDX is a worldwide registered trademark by Airbus. The AFDX data network is based on Ethernet technology using commercial off-the-shelf (COTS) components. The AFDX data network is a specific implementation of ARINC Specification 664 Part 7, a profiled version of an IEEE 802.3 network per parts 1 & 2, which defines how commercial off-the-shelf networking components will be used for future generation Aircraft Data Networks (ADN). The six primary aspects of an AFDX data network include full duplex, redundancy, determinism, high speed performance, switched and profiled network.

Constrained Shortest Path First (CSPF) is an extension of shortest path algorithms. The path computed using CSPF is a shortest path fulfilling a set of constraints. It simply means that it runs shortest path algorithm after pruning those links that violate a given set of constraints. A constraint could be minimum bandwidth required per link, end-to-end delay, maximum number of links traversed, include/exclude nodes. CSPF is widely used in MPLS Traffic Engineering. The routing using CSPF is known as Constraint Based Routing (CBR).

Pastry is an overlay network and routing network for the implementation of a distributed hash table (DHT) similar to Chord. The key–value pairs are stored in a redundant peer-to-peer network of connected Internet hosts. The protocol is bootstrapped by supplying it with the IP address of a peer already in the network and from then on via the routing table which is dynamically built and repaired. It is claimed that because of its redundant and decentralized nature there is no single point of failure and any single node can leave the network at any time without warning and with little or no chance of data loss. The protocol is also capable of using a routing metric supplied by an outside program, such as ping or traceroute, to determine the best routes to store in its routing table.

<span class="mw-page-title-main">Equal-cost multi-path routing</span> Packet routing strategy

Equal-cost multi-path routing (ECMP) is a routing strategy where packet forwarding to a single destination can occur over multiple best paths with equal routing priority. Multi-path routing can be used in conjunction with most routing protocols because it is a per-hop local decision made independently at each router. It can substantially increase bandwidth by load-balancing traffic over multiple paths; however, there may be significant problems in deploying it in practice.

Data center bridging (DCB) is a set of enhancements to the Ethernet local area network communication protocol for use in data center environments, in particular for use with clustering and storage area networks.

In wired computer networking, including the Internet, a hop occurs when a packet is passed from one network segment to the next. Data packets pass through routers as they travel between source and destination. The hop count refers to the number of network devices through which data passes from source to destination.

ITU-T Y.1564 is an Ethernet service activation test methodology, which is the new ITU-T standard for turning up, installing and troubleshooting Ethernet-based services. It is the only standard test methodology that allows for complete validation of Ethernet service-level agreements (SLAs) in a single test.

CoDel is an active queue management (AQM) algorithm in network routing, developed by Van Jacobson and Kathleen Nichols and published as RFC8289. It is designed to overcome bufferbloat in networking hardware, such as routers, by setting limits on the delay network packets experience as they pass through buffers in this equipment. CoDel aims to improve on the overall performance of the random early detection (RED) algorithm by addressing some of its fundamental misconceptions, as perceived by Jacobson, and by being easier to manage.

Deterministic Networking (DetNet) is an effort by the IETF DetNet Working Group to study implementation of deterministic data paths for real-time applications with extremely low data loss rates, packet delay variation (jitter), and bounded latency, such as audio and video streaming, industrial automation, and vehicle control.

References

  1. Rao, S. Dharma; Murthy, C. Siva Ram (2005). "Distributed dynamic QoS-aware routing in WDM optical networks". Computer Networks. 48 (4): 585–604. doi:10.1016/j.comnet.2004.11.003.
  2. "Administrative Distance and Metric". Archived from the original on 2021-11-22. Retrieved 2021-12-23.
  3. "Understand the significance of administrative distance and metrics when working with routers". 19 May 2005. Archived from the original on 2021-12-23. Retrieved 2021-12-23.
  4. "Administrative distance & metric". 26 January 2016. Archived from the original on 2021-12-23. Retrieved 2021-12-23.