Monitor Control Command Set

Last updated

Monitor Control Command Set or MCCS is a computer standard developed by Video Electronics Standards Association (VESA). It defines a binary protocol for controlling the properties of computer monitors from a host device such as PC, set-top box, etc.

Contents

MCCS requires a bidirectional communication protocol like Display Data Channel between host and display, although the specification does not favour any particular protocol.

Controls

A virtual control panel (VCP) code is a binary code that represents a single command entity in the MCCS language. Each command contains variable number of data parameters and command attributes.

The following groups of controls are defined in the standard:

Factory preset
Commands for restoring factory defaults, as well as specifically restoring color, geometry, brightness/contrast, and TV settings defaults, and storing/restoring presets.
Color adjustment
Commands that control color temperature, hue, and saturation.
Geometry adjustment
Commands for adjusting CRT display geometry, such as parallelogram, pincushion, etc.
Image adjustment
Various general commands such as display orientation, degauss, gamma, zoom, focus, brightness/contrast, backlight control, etc. [lower-alpha 1]

It is possible to select the input source using a VCP command. Some monitors will only take VCP commands from the active input source, others will take commands from any connected input source.

Three categories of controls exist:

Continuous (C)
Allow values between zero and a maximum value.
Non-continuous (NC)
Only support a limited set of values.
Table (T)
Large blocks of data.

Control data may be read and write (RW), read-only (RO), or write-only (WO).

The display exposes its supported internal controls via capability strings.

Versions

The original MCCS standard version 1 was released on September 11, 1998.

MCCS Version 2 was released on October 17, 2003. A major update of the standard, it provided support for flat panel displays, VESA DPVL (Digital Packet Video Link) standard; it added a range of television controls and introduced individual control of multiple windows on a display. New classes of VCP codes associated with asset management, secondary displays (for information, status, etc.) and remote program calls to the display processor are introduced.

MCCS Version 2, Revision 1 was released on May 28, 2005 and included some minor updates, as well as clarifications and improved usability of the standard.

MCCS Version 3, released on July 27, 2006, was a major revision and update which introduced significant changes, however this revision has seen very little support from the industry.

The latest release of V2 standard is version 2.2a, adopted January 2011.

Notes

  1. Note that MCCS glosses over the difference in how CRT and LCD or newer displays interpret brightness and contrast settings: adjusting LCD brightness affects overall luminance, which is the same as "contrast" on CRTs. LCD "contrast" instead adjusts the white level. [1] [2]

Related Research Articles

<span class="mw-page-title-main">Cathode-ray tube</span> Vacuum tube manipulated to display images on a phosphorescent screen

A cathode-ray tube (CRT) is a vacuum tube containing one or more electron guns, which emit electron beams that are manipulated to display images on a phosphorescent screen. The images may represent electrical waveforms (oscilloscope), pictures, radar targets, or other phenomena. A CRT on a television set is commonly called a picture tube. CRTs have also been used as memory devices, in which case the screen is not intended to be visible to an observer. The term cathode ray was used to describe electron beams when they were first discovered, before it was understood that what was emitted from the cathode was a beam of electrons.

<span class="mw-page-title-main">Computer monitor</span> Computer output device

A computer monitor is an output device that displays information in pictorial or textual form. A discrete monitor comprises a visual display, support electronics, power supply, housing, electrical connectors, and external user controls.

<span class="mw-page-title-main">Liquid-crystal display</span> Display that uses the light-modulating properties of liquid crystals

A liquid-crystal display (LCD) is a flat-panel display or other electronically modulated optical device that uses the light-modulating properties of liquid crystals combined with polarizers. Liquid crystals do not emit light directly but instead use a backlight or reflector to produce images in color or monochrome. LCDs are available to display arbitrary images or fixed images with low information content, which can be displayed or hidden. For instance: preset words, digits, and seven-segment displays, as in a digital clock, are all good examples of devices with these displays. They use the same basic technology, except that arbitrary images are made from a matrix of small pixels, while other displays have larger elements. LCDs can either be normally on (positive) or off (negative), depending on the polarizer arrangement. For example, a character positive LCD with a backlight will have black lettering on a background that is the color of the backlight, and a character negative LCD will have a black background with the letters being of the same color as the backlight. Optical filters are added to white on blue LCDs to give them their characteristic appearance.

<span class="mw-page-title-main">Digital Visual Interface</span> Standard for transmitting digital video to a display

Digital Visual Interface (DVI) is a video display interface developed by the Digital Display Working Group (DDWG). The digital interface is used to connect a video source, such as a video display controller, to a display device, such as a computer monitor. It was developed with the intention of creating an industry standard for the transfer of uncompressed digital video content.

<span class="mw-page-title-main">Video Electronics Standards Association</span> Technical standards organization for computer display standards

VESA, formally known as Video Electronics Standards Association, is an American technical standards organization for computer display standards. The organization was incorporated in California in July 1989 and has its office in San Jose. It claims a membership of over 300 companies.

Gamma correction or gamma is a nonlinear operation used to encode and decode luminance or tristimulus values in video or still image systems. Gamma correction is, in the simplest cases, defined by the following power-law expression:

<span class="mw-page-title-main">Plasma display</span> Type of flat panel display

A plasma display panel (PDP) is a type of flat panel display that uses small cells containing plasma: ionized gas that responds to electric fields. Plasma televisions were the first large flat panel displays to be released to the public.

The Display Data Channel, or DDC, is a collection of protocols for digital communication between a computer display and a graphics adapter that enable the display to communicate its supported display modes to the adapter and that enable the computer host to adjust monitor parameters, such as brightness and contrast.

Apple Inc. sold a variety of LCD and CRT computer displays in the past. Apple paused production of their own standalone displays in 2016 and partnered with LG to design displays for Macs. In June 2019, the Pro Display XDR was introduced, however it was expensive and targeted for professionals. Nearly three years later, in March 2022, the Studio Display was launched as a consumer-targeted counterpart to the professional monitor. These two are currently the only Apple-branded displays available.

<span class="mw-page-title-main">Display resolution</span> Number of distinct pixels in each dimension that can be displayed

The display resolution or display modes of a digital television, computer monitor or display device is the number of distinct pixels in each dimension that can be displayed. It can be an ambiguous term especially as the displayed resolution is controlled by different factors in cathode ray tube (CRT) displays, flat-panel displays and projection displays using fixed picture-element (pixel) arrays.

A thin-film-transistor liquid-crystal display is a variant of a liquid-crystal display that uses thin-film-transistor technology to improve image qualities such as addressability and contrast. A TFT LCD is an active matrix LCD, in contrast to passive matrix LCDs or simple, direct-driven LCDs with a few segments.

<span class="mw-page-title-main">Active shutter 3D system</span> Method of displaying stereoscopic 3D images

An active shutter 3D system is a technique of displaying stereoscopic 3D images. It works by only presenting the image intended for the left eye while blocking the right eye's view, then presenting the right-eye image while blocking the left eye, and repeating this so rapidly that the interruptions do not interfere with the perceived fusion of the two images into a single 3D image.

<span class="mw-page-title-main">CRT projector</span> Older type of video projector that uses small, high intensity CRTs as image generating elements

A CRT projector is a video projector that uses a small, high-brightness cathode ray tube (CRT) as the image generating element. The image is then focused and enlarged onto a screen using a lens kept in front of the CRT face. The first color CRT projectors came out in the early 1950s. Most modern CRT projectors are color and have three separate CRTs, and their own lenses to achieve color images. The red, green and blue portions of the incoming video signal are processed and sent to the respective CRTs whose images are focused by their lenses to achieve the overall picture on the screen. Various designs have made it to production, including the "direct" CRT-lens design, and the Schmidt CRT, which employed a phosphor screen that illuminates a perforated spherical mirror, all within an evacuated cathode ray tube.

<span class="mw-page-title-main">DisplayPort</span> Digital display interface

DisplayPort (DP) is a digital display interface developed by a consortium of PC and chip manufacturers and standardized by the Video Electronics Standards Association (VESA). It is primarily used to connect a video source to a display device such as a computer monitor. It can also carry audio, USB, and other forms of data.

Coordinated Video Timings is a standard by VESA which defines the timings of the component video signal. Initially intended for use by computer monitors and video cards, the standard made its way into consumer televisions.

<span class="mw-page-title-main">Large-screen television technology</span> Technology rapidly developed in the late 1990s and 2000s

Large-screen television technology developed rapidly in the late 1990s and 2000s. Prior to the development of thin-screen technologies, rear-projection television was standard for larger displays, and jumbotron, a non-projection video display technology, was used at stadiums and concerts. Various thin-screen technologies are being developed, but only liquid crystal display (LCD), plasma display (PDP) and Digital Light Processing (DLP) have been publicly released. Recent technologies like organic light-emitting diode (OLED) as well as not-yet-released technologies like surface-conduction electron-emitter display (SED) or field emission display (FED) are in development to replace earlier flat-screen technologies in picture quality.

A multiple-sync (multisync) monitor, also known as a multiscan or multimode monitor, is a raster-scan analog video monitor that can properly synchronise with multiple horizontal and vertical scan rates. In contrast, fixed frequency monitors can only synchronise with a specific set of scan rates. They are generally used for computer displays, but sometimes for television, and the terminology is mostly applied to CRT displays although the concept applies to other technologies.

Contrast in visual perception is a felt difference in appearance of two or more parts of a field seen simultaneously or successively.

DisplayID is a VESA standard for metadata describing display device capabilities to the video source. It is designed to replace E-EDID standard and EDID structure v1.4.

V-by-One HS is an electrical digital signaling standard that can run at faster speeds over inexpensive twisted-pair copper cables than Low-voltage differential signaling, or LVDS. It was originally developed by THine Electronics, Inc. in 2007 for high-definition televisions but since 2010 V-by-One HS has been widely adopted in various markets such as document processing, automotive infotainment systems, industrial cameras and machine vision, robotics and amusement equipments.

References

  1. Poynton, Charles. ""Brightness" and "Contrast" controls". poynton.ca. Retrieved 17 November 2020.
  2. Patek, Marcel. "LCD Displays - liquid crystals - gamut - phosphors - polarization". Digital Photography.