Multipole density formalism

Last updated
Isosurface of static electron density for doxycycline resulting from the Multipole Model refinement at
1.5
A
/
e
3
{\displaystyle 1.5\mathrm {\AA} /e^{3}}
level. DoxyMM.png
Isosurface of static electron density for doxycycline resulting from the Multipole Model refinement at level.
Equivalent isosurface resulting from the Independent Atom Model. Notice the lack of covalent bonds' electrons. DoxyIAM.png
Equivalent isosurface resulting from the Independent Atom Model. Notice the lack of covalent bonds' electrons.

The Multipole Density Formalism (also referred to as Hansen-Coppens Formalism) is an X-ray crystallography method of electron density modelling proposed by Niels K. Hansen and Philip Coppens in 1978. Unlike the commonly used Independent Atom Model, the Hansen-Coppens Formalism presents an aspherical approach, allowing one to model the electron distribution around a nucleus separately in different directions and therefore describe numerous chemical features of a molecule inside the unit cell of an examined crystal in detail.

Contents

Theory

Visual representations of a few real spherical harmonics used in Multipole Density Formalism. The distance of the surface from the origin is proportional to the value for given angles, while the color denotes the sign (blue for positive, yellow for negative). Spherical Harmonics.png
Visual representations of a few real spherical harmonics used in Multipole Density Formalism. The distance of the surface from the origin is proportional to the value for given angles, while the color denotes the sign (blue for positive, yellow for negative).

Independent Atom Model

The Independent Atom Model (abbreviated to IAM), upon which the Multipole Model is based, is a method of charge density modelling. It relies on an assumption that electron distribution around the atom is isotropic, and that therefore charge density is dependent only on the distance from a nucleus. The choice of the radial function used to describe this electron density is arbitrary, granted that its value at the origin is finite. In practice either Gaussian- or Slater-type 1s-orbital functions are used. [1]

Due to its simplistic approach, this method provides a straightforward model that requires no additional parameters (other than positional and Debye–Waller factors) to be refined. This allows the IAM to perform satisfactorily while a relatively low amount of data from the diffraction experiment is available. However, the fixed shape of the singular basis function prevents any detailed description of aspherical atomic features.

Kappa Formalism

In order to adjust some valence shell parameters, the Kappa formalism was proposed. [2] It introduces two additional refineable parameters: an outer shell population (denoted as ) and its expansion/contraction (). Therefore, the electron density is formulated as:

While , being responsible for the charge flow part, is linearly coupled with partial charge, the normalised parameter scales radial coordinate . Therefore, lowering the parameter results in expansion of the outer shell and, conversely, raising it results in contraction. [3] Although the Kappa formalism is still, strictly speaking, a spherical method, it is an important step towards understanding modern approaches as it allows one to distinguish chemically different atoms of the same element.

Multipole description

In the multipole model description, the charge density around a nucleus is given by the following equation:

The spherical part remains almost indistinguishable from the Kappa formalism, the only difference being one parameter corresponding to the population of the inner shell. The real strength of the Hansen-Coppens formalism lies in the right, deformational part of the equation. Here fulfils a role similar to in the Kappa formalism (expansion/contraction of the aspherical part), whereas individual are fixed spherical functions, analogous to . Spherical harmonics (each with its populational parameter ) are, however, introduced to simulate the electrically anisotropic charge distribution. [4]

In this approach, a fixed coordinate system for each atom needs to be applied. Although at first glance it seems practical to arbitrarily and indiscriminately make it contingent on the unit cell for all atoms present, it is far more beneficial to assign each atom its own local coordinates, which allows for focusing on hybridisation-specific interactions. While the singular sigma bond of the hydrogen can be described well using certain z-parallel pseudoorbitals, xy-plane oriented multipoles with a 3-fold rotational symmetry will prove more beneficial for flat aromatic structures. [5]

Applications

Electron density isosurface map around a covalent bond modelled with the Multipole Model, with populational parameters taken from the ELMAM2 database. Note the elongated high-density area next to the hydrogen atom, pointing in the direction of oxygen. OH bond charge density resulting from MM.png
Electron density isosurface map around a covalent bond modelled with the Multipole Model, with populational parameters taken from the ELMAM2 database. Note the elongated high-density area next to the hydrogen atom, pointing in the direction of oxygen.
Electron density isosurface map around a covalent bond modelled with the Independent Atom Model in the same scale. Nucleus-centred functions impose lower charge density on the bond path. OH bond charge density resulting from IAM.png
Electron density isosurface map around a covalent bond modelled with the Independent Atom Model in the same scale. Nucleus-centred functions impose lower charge density on the bond path.

The primary advantage of the Hansen-Coppens formalism is its ability to free the model from spherical restraints and describe the surroundings of a nucleus far more accurately. In this way it becomes possible to examine some molecular features which would normally be only roughly approximated or completely ignored.

Hydrogen positioning

X-ray crystallography allows the researcher to precisely determine the position of peak electron density and to reason about the placement of nuclei based on this information. This approach works without any problems for heavy (non-hydrogen) atoms, whose inner shell electrons contribute to the density function to a far greater degree then outer shell electrons.

However, hydrogen atoms possess a feature unique among all the elements - they possess exactly one electron, which additionally is located on their valence shell and therefore is involved in creating strong covalent bonds with atoms of various other elements. While a bond is forming, the maximum of the electron density function moves significantly away from the nucleus and towards the other atom. This prevents any spherical approach from determining hydrogen position correctly by itself. Therefore, usually the hydrogen position is estimated basing on neutron crystallography data for similar molecules, [6] or it is not modelled at all in the case of low-quality diffraction data.

It is possible (albeit disputable) to freely refine hydrogen atoms' positions using the Hansen-Coppens formalism, after releasing the bond lengths from any restraints derived from neutron measurements. [7] The bonding orbital simulated with adequate multipoles describes the density distribution neatly while preserving believable bond lengths. It may be worth approximating hydrogen atoms' anisotropic displacement parameters, e.g. using SHADE, before introducing the formalism and, possibly, discarding bond distance constraints. [8]

Bonding modelling

In order to analyse the length and strength of various interactions within the molecule, Richard Bader's "Atoms in molecules" theorem may be applied. Due to the complex description of the electron field provided by this aspherical model, it becomes possible to establish realistic bond paths between interacting atoms as well as to find and characterise their critical points. Deeper insight into this data yields useful information about bond strength, type, polarity or ellipticity, and when compared with other molecules brings greater understanding about the actual electron structure of the examined compound. [9]

Charge flow

Due to the fact that for each multipole of every atom its population is being refined independently, individual charges will rarely be integers. In real cases, electron density flows freely through the molecule and is not bound by any restrictions resulting from the outdated Bohr atom model and found in IAM. Therefore, through e.g. an accurate Bader analysis, net atomic charges may be estimated, which again is beneficial for deepening the understanding of systems under investigation.

Drawbacks and limitations

Although the Multipole Formalism is a simple and straightforward alternative means of structure refinement, it is definitely not flawless. While usually for each atom either three or nine parameters are to be refined, depending on whether an anisotropic displacement is being taken into account or not, a full multipole description of heavy atoms belonging to the fourth and subsequent periods (such as chlorine, iron or bromine) requires refinement of up to 37 parameters. [10] This proves problematic for any crystals possessing large asymmetric units (especially macromolecular compounds) and renders a refinement using the Hansen-Coppens Formalism unachievable for low-quality data with an unsatisfactory ratio of independent reflections to refined parameters.

Caution should be taken while refining some of the parameters simultaneously (i.e. or , multipole populations and thermal parameters), as they may correlate strongly, resulting in an unstable refinement or unphysical parameter values. Applying additional constraints resulting from local symmetry for each atom in a molecule (which decreases the number of refined multipoles) [1] or importing populational parameters from existing databases [11] [12] may also be necessary to achieve a passable model. On the other hand, the aforementioned approaches significantly reduce the amount of information required from experiments, while preserving some level of detail concerning aspherical charge distribution. [5] Therefore, even macromolecular structures with satisfactory X-ray diffraction data can be modelled aspherically in a similar fashion. [13]

Despite their similarity, individual multipoles do not correspond to atomic projections of molecular orbitals of a wavefuntion as resulting from quantum calculations. Nevertheless, as brilliantly summarized by Stewart, "The structure of the model crystal density, as a superposition of pseudoatoms [...] does have quantitative features which are close to many results based on quantum chemical calculations". [14] If the overlap between the atomic wavefunctions is small enough, as it occurs for example in transition metal complexes, the atomic multipoles may be correlated with the atomic valence orbitals and multipolar coefficients may be correlated with populations of metal d-orbitals. [15] A stronger correlation between the X-ray measured diffracted intensities and quantum mechanical wavefunctions is possible using the wavefunction based methods [16] of Quantum Crystallography, as for example the X-ray atomic orbital model, [17] the so-called experimental wavefunction [18] or the Hirshfeld Atom Refinement. [19]

Related Research Articles

<span class="mw-page-title-main">Dipole</span> Electromagnetic phenomenon

In physics, a dipole is an electromagnetic phenomenon which occurs in two ways:

<span class="mw-page-title-main">Hydrogen atom</span> Atom of the element hydrogen

A hydrogen atom is an atom of the chemical element hydrogen. The electrically neutral atom contains a single positively charged proton and a single negatively charged electron bound to the nucleus by the Coulomb force. Atomic hydrogen constitutes about 75% of the baryonic mass of the universe.

<span class="mw-page-title-main">Scanning tunneling microscope</span> Instrument able to image surfaces at the atomic level by exploiting quantum tunneling effects

A scanning tunneling microscope (STM) is a type of microscope used for imaging surfaces at the atomic level. Its development in 1981 earned its inventors, Gerd Binnig and Heinrich Rohrer, then at IBM Zürich, the Nobel Prize in Physics in 1986. STM senses the surface by using an extremely sharp conducting tip that can distinguish features smaller than 0.1 nm with a 0.01 nm (10 pm) depth resolution. This means that individual atoms can routinely be imaged and manipulated. Most scanning tunneling microscopes are built for use in ultra-high vacuum at temperatures approaching absolute zero, but variants exist for studies in air, water and other environments, and for temperatures over 1000 °C.

Electrical resistivity is a fundamental specific property of a material that measures its electrical resistance or how strongly it resists electric current. A low resistivity indicates a material that readily allows electric current. Resistivity is commonly represented by the Greek letter ρ (rho). The SI unit of electrical resistivity is the ohm-metre (Ω⋅m). For example, if a 1 m3 solid cube of material has sheet contacts on two opposite faces, and the resistance between these contacts is 1 Ω, then the resistivity of the material is 1 Ω⋅m.

Electron density or electronic density is the measure of the probability of an electron being present at an infinitesimal element of space surrounding any given point. It is a scalar quantity depending upon three spatial variables and is typically denoted as either or . The density is determined, through definition, by the normalised -electron wavefunction which itself depends upon variables. Conversely, the density determines the wave function modulo up to a phase factor, providing the formal foundation of density functional theory.

<span class="mw-page-title-main">Magnetic moment</span> Magnetic strength and orientation of an object that produces a magnetic field

In electromagnetism, the magnetic moment is the magnetic strength and orientation of a magnet or other object that produces a magnetic field. The magnetic moment is typically expressed as a vector. Examples of objects that have magnetic moments include loops of electric current, permanent magnets, elementary particles, composite particles, various molecules, and many astronomical objects.

<span class="mw-page-title-main">Force field (chemistry)</span> Concept on molecular modeling

In the context of chemistry and molecular modelling, a force field is a computational method that is used to estimate the forces between atoms within molecules and also between molecules. More precisely, the force field refers to the functional form and parameter sets used to calculate the potential energy of a system of atoms or coarse-grained particles in molecular mechanics, molecular dynamics, or Monte Carlo simulations. The parameters for a chosen energy function may be derived from experiments in physics and chemistry, calculations in quantum mechanics, or both. Force fields are interatomic potentials and utilize the same concept as force fields in classical physics, with the difference that the force field parameters in chemistry describe the energy landscape, from which the acting forces on every particle are derived as a gradient of the potential energy with respect to the particle coordinates.

The Debye–Waller factor (DWF), named after Peter Debye and Ivar Waller, is used in condensed matter physics to describe the attenuation of x-ray scattering or coherent neutron scattering caused by thermal motion. It is also called the B factor, atomic B factor, or temperature factor. Often, "Debye–Waller factor" is used as a generic term that comprises the Lamb–Mössbauer factor of incoherent neutron scattering and Mössbauer spectroscopy.

The bond valencemethod or mean method is a popular method in coordination chemistry to estimate the oxidation states of atoms. It is derived from the bond valence model, which is a simple yet robust model for validating chemical structures with localized bonds or used to predict some of their properties. This model is a development of Pauling's rules.

The Newman–Penrose (NP) formalism is a set of notation developed by Ezra T. Newman and Roger Penrose for general relativity (GR). Their notation is an effort to treat general relativity in terms of spinor notation, which introduces complex forms of the usual variables used in GR. The NP formalism is itself a special case of the tetrad formalism, where the tensors of the theory are projected onto a complete vector basis at each point in spacetime. Usually this vector basis is chosen to reflect some symmetry of the spacetime, leading to simplified expressions for physical observables. In the case of the NP formalism, the vector basis chosen is a null tetrad: a set of four null vectors—two real, and a complex-conjugate pair. The two real members often asymptotically point radially inward and radially outward, and the formalism is well adapted to treatment of the propagation of radiation in curved spacetime. The Weyl scalars, derived from the Weyl tensor, are often used. In particular, it can be shown that one of these scalars— in the appropriate frame—encodes the outgoing gravitational radiation of an asymptotically flat system.

<span class="mw-page-title-main">Atomic form factor</span> Measure of the scattering amplitude of a wave by an isolated atom

In physics, the atomic form factor, or atomic scattering factor, is a measure of the scattering amplitude of a wave by an isolated atom. The atomic form factor depends on the type of scattering, which in turn depends on the nature of the incident radiation, typically X-ray, electron or neutron. The common feature of all form factors is that they involve a Fourier transform of a spatial density distribution of the scattering object from real space to momentum space. For an object with spatial density distribution, , the form factor, , is defined as

A hydrogen-like atom (or hydrogenic atom) is any atom or ion with a single valence electron. These atoms are isoelectronic with hydrogen. Examples of hydrogen-like atoms include, but are not limited to, hydrogen itself, all alkali metals such as Rb and Cs, singly ionized alkaline earth metals such as Ca+ and Sr+ and other ions such as He+, Li2+, and Be3+ and isotopes of any of the above. A hydrogen-like atom includes a positively charged core consisting of the atomic nucleus and any core electrons as well as a single valence electron. Because helium is common in the universe, the spectroscopy of singly ionized helium is important in EUV astronomy, for example, of DO white dwarf stars.

The hybrid QM/MM approach is a molecular simulation method that combines the strengths of ab initio QM calculations (accuracy) and MM (speed) approaches, thus allowing for the study of chemical processes in solution and in proteins. The QM/MM approach was introduced in the 1976 paper of Warshel and Levitt. They, along with Martin Karplus, won the 2013 Nobel Prize in Chemistry for "the development of multiscale models for complex chemical systems".

<span class="mw-page-title-main">Electron localization function</span> Method of measuring the extent of spatial localization of an electron

In quantum chemistry, the electron localization function (ELF) is a measure of the likelihood of finding an electron in the neighborhood space of a reference electron located at a given point and with the same spin. Physically, this measures the extent of spatial localization of the reference electron and provides a method for the mapping of electron pair probability in multielectronic systems.

Voronoi deformation density (VDD) is a method employed in computational chemistry to compute the atomic charge distribution of a molecule in order to provide information about its chemical properties. The method is based on the partitioning of space into non-overlapping atomic areas modelled as Voronoi cells and then computing the deformation density within those cells (i.e. the extent to which electron density differs from that of an unbonded atom).

Kramers' opacity law describes the opacity of a medium in terms of the ambient density and temperature, assuming that the opacity is dominated by bound-free absorption or free-free absorption. It is often used to model radiative transfer, particularly in stellar atmospheres. The relation is named after the Dutch physicist Hendrik Kramers, who first derived the form in 1923.

<span class="mw-page-title-main">Electric dipole moment</span> Measure of positive and negative charges

The electric dipole moment is a measure of the separation of positive and negative electrical charges within a system, that is, a measure of the system's overall polarity. The SI unit for electric dipole moment is the coulomb-meter (C⋅m). The debye (D) is another unit of measurement used in atomic physics and chemistry.

The Maxwell–Bloch equations, also called the optical Bloch equations describe the dynamics of a two-state quantum system interacting with the electromagnetic mode of an optical resonator. They are analogous to the Bloch equations which describe the motion of the nuclear magnetic moment in an electromagnetic field. The equations can be derived either semiclassically or with the field fully quantized when certain approximations are made.

Quantum crystallography is a branch of crystallography that investigates crystalline materials within the framework of quantum mechanics, with analysis and representation, in position or in momentum space, of quantities like wave function, electron charge and spin density, density matrices and all properties related to them. Like the quantum chemistry, Quantum crystallography involves both experimental and computational work. The theoretical part of quantum crystallography is based on quantum mechanical calculations of atomic/molecular/crystal wave functions, density matrices or density models, used to simulate the electronic structure of a crystalline material. While in quantum chemistry, the experimental works mainly rely on spectroscopy, in quantum crystallography the scattering techniques play the central role, although spectroscopy as well as atomic microscopy are also sources of information.

In computational chemistry, natural resonance theory (NRT) is an iterative, variational functional embedded into the natural bond orbital (NBO) program, commonly run in Gaussian, GAMESS, ORCA, Ampac and other software packages. NRT was developed in 1997 by Frank A. Weinhold and Eric D. Glendening, chemistry professors at University of Wisconsin-Madison and Indiana State University, respectively. Given a list of NBOs for an idealized natural Lewis structure, the NRT functional creates a list of Lewis resonance structures and calculates the resonance weights of each contributing resonance structure. Structural and chemical properties, such as bond order, valency, and bond polarity, may be calculated from resonance weights. Specifically, bond orders may be divided into their covalent and ionic contributions, while valency is the sum of bond orders of a given atom. This aims to provide quantitative results that agree with qualitative notions of chemical resonance. In contrast to the "wavefunction resonance theory" (i.e., the superposition of wavefunctions), NRT uses the density matrix resonance theory, performing a superposition of density matrices to realize resonance. NRT has applications in ab initio calculations, including calculating the bond orders of intra- and intermolecular interactions and the resonance weights of radical isomers.

References

  1. 1 2 Farrugia, L. J. "The Multipole Model and Refinement" (PDF). Jyväskylä Summer School on Charge Density; August 2007. Retrieved 2017-01-25.
  2. Coppens, P.; Guru Row, T. N.; Leung, P.; Stevens, E. D.; Becker, P. J.; Yang, Y. W. (1979). "Net atomic charges and molecular dipole moments from spherical-atom X-ray refinements, and the relation between atomic charge and shape". Acta Crystallogr. A35 (1): 63–72. Bibcode:1979AcCrA..35...63C. doi:10.1107/S0567739479000127.
  3. Coppens, Philip (1997). "Chapter 3: Chemical Bonding and the X-ray Scattering Formalism". X-Ray Charge Densities and Chemical Bonding. International Union of Crystallography. ISBN   9780195356946.
  4. Coppens, P.; Hansen, N. K. (1978). "Testing aspherical atom refinements on small-molecule data sets". Acta Crystallogr. A34 (6): 909–921. Bibcode:1978AcCrA..34..909H. doi:10.1107/S0567739478001886.
  5. 1 2 Gatti, Carlo; Macchi, Piero (2012-01-09). "Section 15.2: Multipolar refinement of macromolecules". Modern Charge-Density Analysis. Springer Science & Business Media.
  6. Allen, F. H.; Bruno, I. J. (2010). "Bond lengths in organic and metal-organic compounds revisited: X—H bond lengths from neutron diffraction data". Acta Crystallogr. B66 (3): 380–386. doi:10.1107/S0108768110012048. PMID   20484809.
  7. Hamzaoui, F.; Drissi, M.; Chouaih, A.; Lagant, P.; Vergoten, G. (2007). "Electron Charge Density Distribution from X-ray Diffraction Study of the M-Nitrophenol Compound in the Monoclinic Form". Int J Mol Sci. 8 (2): 103–115. doi: 10.3390/i8020103 . PMC   3666049 .
  8. Madsen, A. Ø. (2006). "SHADE web server for estimation of hydrogen anisotropic displacement parameters". J. Appl. Crystallogr. 39 (5): 757–758. doi:10.1107/S0021889806026379.
  9. Bader, R. F. W. (1991). "A quantum theory of molecular structure and its applications". Chem. Rev. 91 (5): 893–928. doi:10.1021/cr00005a013.
  10. Kumar, Prashant; Cabaj, Malgorzata Katarzyna; Pazio, Aleksandra; Dominiak, Paulina Maria (2018). "Protonated nucleobases are not fully ionized in their chloride salt crystals and form metastable base pairs further stabilized by the surrounding anions". IUCrJ. 5 (4): 449–469. doi: 10.1107/S2052252518006346 . ISSN   2052-2525. PMC   6038959 . PMID   30002846.
  11. Domagala, S.; Fournier, B.; Liebschner, D.; Guillot, B.; Jelsch, C. (2012). "An improved experimental databank of transferable multipolar atom models - ELMAM2. Construction details and applications". Acta Crystallogr. A68 (3): 337–351. doi:10.1107/S0108767312008197. PMID   22514066. S2CID   36055849.
  12. Kumar, Prashant; Gruza, Barbara; Bojarowski, Sławomir Antoni; Dominiak, Paulina Maria (2019). "Extension of the transferable aspherical pseudoatom data bank for the comparison of molecular electrostatic potentials in structure–activity studies". Acta Crystallographica Section A. 75 (2): 398–408. doi:10.1107/S2053273319000482. ISSN   2053-2733. PMID   30821272. S2CID   73469911.
  13. Guillot, B.; Jelsch, C.; Podjarny, A.; Lecomte, C. (2008). "Charge-density analysis of a protein structure at subatomic resolution: the human aldose reductase case" (PDF). Acta Crystallogr. D64 (5): 567–588. doi:10.1107/S0907444908006082. PMID   18453693.
  14. Flensburg, C.; Larsen, S.; Stewart, R. F. (1995). "Experimental charge density study of methylammonium hydrogen succinate monohydrate. A salt with a very short O-H-O hydrogen bond". J. Phys. Chem. 99 (25): 10130–10141. doi:10.1021/j100025a013.
  15. Holladay, A.; Leung, P.; Coppens, P. (1983). "Generalized relations between {\it d}-orbital occupancies of transition-metal atoms and electron-density multipole population parameters from X-ray diffraction data". Acta Crystallographica Section A. 39 (3): 377–387. doi:10.1107/S0108767383000823.
  16. Massa, L.; Huang, L.; Karle, J. (25 February 1995). "Quantum crystallography and the use of kernel projector matrices". International Journal of Quantum Chemistry. 56 (S29): 371–384. doi:10.1002/qua.560560841.
  17. Tanaka, Kiyoaki; Makita, Ryoko; Funahashi, Shiro; Komori, Takashi; Zaw, Win (2008). "X-ray atomic orbital analysis. I. Quantum-mechanical and crystallographic framework of the method". Acta Crystallographica Section A. 64 (4): 437–449. Bibcode:2008AcCrA..64..437T. doi:10.1107/S0108767308011227. PMID   18560160.
  18. Jayatilaka, Dylan; Grimwood, Daniel J. (1 January 2001). "Wavefunctions derived from experiment. I. Motivation and theory". Acta Crystallographica Section A. 57 (1): 76–86. doi:10.1107/S0108767300013155. PMID   11124506.
  19. Jayatilaka, D.; Dittrich, B. (2008). "X-ray structure refinement using aspherical atomic density functions obtained from quantum-mechanical calculations". Acta Crystallographica Section A. 64 (3): 383–393. Bibcode:2008AcCrA..64..383J. doi:10.1107/S0108767308005709. PMID   18421128.