OpenSafety

Last updated
openSAFETY logo OpenSAFETY.jpg
openSAFETY logo

openSAFETY is a communications protocol used to transmit information that is crucial for the safe operation of machinery in manufacturing lines, process plants, or similar industrial environments. Such information may be e.g. an alert signal triggered when someone or something has breached a light curtain on a factory floor. While traditional safety solutions rely on dedicated communication lines connecting machinery and control systems via special relays, openSAFETY does not need any extra cables reserved for safety-related information. It is a bus-based protocol that allows for passing on safety data over existing Industrial Ethernet connections between end devices and higher-level automation systems – connections principally established and used for regular monitoring and control purposes. Unlike other bus-based safety protocols that are suitable for use only with a single or a few specific Industrial Ethernet implementations and are incompatible with other systems, openSAFETY works with a wide range of different Industrial Ethernet variants.

Contents

Certifications, approvals and key functionality

openSAFETY is certified according to IEC 61508 [1] and meets the requirements of SIL 3 applications. The protocol has been approved by national IEC committees representing over two dozen countries around the world, and has been released for international standardization in IEC 61784-3 FSCP 13. [2] [3]

openSAFETY supports functional features to enable fast data transfer such as direct communication between nodes on a network (cross-traffic) as well as a range of measures needed to ensure data integrity and accuracy, e.g. time stamps, unique data packet identifiers, and others. [4] One particularly notable characteristic is openSAFETY's encapsulation of safety data within an Ethernet frame: [5] two subframes, each being an identical duplicate of the other, are combined to form the full safety frame. Each of the subframes is secured by its own checksum, which in effect provides multiple safeguards and levels of redundancy to ensure any distortions of safety data or other types of faults cannot go unnoticed. [6]

Compatibility and open-source license

In contrast to all other bus-based safety solutions on the market, which were created to complement a specific Industrial Ethernet protocol or family of bus systems, openSAFETY was designed for general interoperability. Though openSAFETY was conceived by the Ethernet POWERLINK Standardization Group (EPSG) and originally developed as a safety companion to that organization’s own Industrial Ethernet variant, POWERLINK, the safety protocol is no longer bound to POWERLINK. Instead, it can be used with various major Industrial Ethernet implementations, namely PROFINET, SERCOS III, EtherNet/IP, Modbus-TCP, and POWERLINK. [7] This broad compatibility with about 90% of the installed base of Industrial Ethernet installations in 2010 [8] is achieved because openSAFETY operates only on the topmost (application) layer of the network, where safety data can be trafficked irrespective of specific network characteristics that may differ from one underlying bus system to another. This approach is commonly known as "black channel" operation in communication protocol engineering. [9]

Proof of concept presentation in 2010

A relatively late arrival on the scene, [10] openSAFETY was first released in 2009. It is based on its immediate precursor technology, POWERLINK Safety, which was originally launched in 2007. openSAFETY won broad public attention in April 2010, when a presentation at the Hannover Messe trade show in Germany showcased four different implementations of the safety solution running in SERCOS III, Modbus TCP, EtherNet/IP and POWERLINK environments. [11] The public presentation and open-source release of the protocol was hotly debated, with strong reactions both in favor and against the new solution, which prompted extensive reporting in the trade press. [12]

Following the major openSAFETY presentation in Hanover, proponents of the new solution gave lectures at other industry events as well, e.g. at TÜV Rheinland’s 9th International Symposium in Cologne, Germany, on 4–5 May 2010. Speaking at this conference on Functional Safety in Industrial Applications, Stefan Schönegger of Austria’s Bernecker + Rainer Industrie-Elektronik Ges.m.b.H. (B&R), a co-creator and major advocate of openSAFETY, provided an introduction to key characteristics of the new protocol. [13] Reports on later gatherings indicate that the focus of presentations and discussions about the protocol soon shifted to specific implementation and applicability issues. [14] [15]

See also

Notes and references

  1. IEC 61508 covers the Functional safety of electrical/electronic/programmable electronic safety-related systems.
  2. IEC 61784-3 covers Industrial communication networks - Profiles - Part 3: Functional safety fieldbuses.
  3. Hoske, Mark T. "IEC approves openSAFETY, bus-independent protocol." Control Engineering website. 11 August 2010.
  4. Lydon, Bill. "Multivendor Ethernet Safety Protocol - Noble Goal." Automation website. April 2011. The article discusses major features of the technology. Lydon finds that the "concept could be simply an interesting idea but the openSAFETY group has published a number of testimonials from users," and goes on to cite appraisals from senior management officials at a number of different companies including Alstom Power Automation & Controls and Nestlé Corporate Engineering.
  5. See Chapter 3. Media Access Control (MAC) frame and packet specifications in the IEEE 802.3-2008 standard, Section One for details on standard Ethernet frame formats and the principle of data encapsulation.
  6. Detailed, up-to-date information on the protocol’s features and functions complementing and expanding on this brief characterization can be found on the official openSAFETY website (see External Links section).
  7. "Safety Technology Supports all Major Ethernet Protocols." Industrial Engineering News March 2011 (vol. 37, no. 3): 26. The article reports that openSAFETY support for use with PROFINET systems had recently been added to complement the protocols' previously established compatibility with other bus systems like SERCOS III, Modbus TCP, EtherNet/IP, and POWERLINK.
  8. "Three Variants Dominate Industrial Ethernet." ControlDesign.com website. 29 April 2010. The article cites an IMS Research study that puts the combined market share of EtherNet/IP, PROFInet, Modbus TCP, and POWERLINK at 91%.
  9. Verhappen, Ian. "The Hidden Network." ControlGlobal.com website. 2 April 2011. Verhappen discusses the widespread use of the term in this field as well as the lack of a precise definition for it, and follows up with an actual examination of "black channel" safety data transfer.
  10. Specifications for competing solutions were released as early as 1999 in the case of PROFIsafe.
  11. Presher, Al. "New OpenSAFETY Protocol." Archived 2011-04-24 at the Wayback Machine DesignNews website. 10 July 2010.
  12. While English-language periodicals have not focused as much on these controversial debates, reactions from a number of industry players are well documented in feature articles and interviews published in German trade magazines, e.g. in open automation (3/2010, p. 54-55), Computer & Automation (5/2010, p. 18-20), messtec drives Automation (6/2010, p. 36-37) and A&D (9/2010, p. 65). Most articles indicate that openSAFETY was met with particularly vocal opposition from proponents of competing proprietary safety solutions, e.g. CIP Safety for SERCOS III.
  13. Schönegger, Stefan. openSAFETY – The standard for safe communication. Archived 2011-07-17 at the Wayback Machine
  14. "First Korea Industrial Ethernet Conference." In its news section, the Industrial Ethernet Book website reports that about 140 participants attended presentations on "various aspects of the implementation of Powerlink and openSAFETY," delivered by speakers who "presented reference projects as well as hardware components."
  15. "Second Industrial Ethernet Conference in Paris." Process Engineering Control & Maintenance. March/April 2011: 32. The article states that "participants from more than 50 companies" attended the event where various "speakers addressed topics such as openSAFETY and the implementation of applications with the first open, bus-independent safety protocol worldwide."

Related Research Articles

<span class="mw-page-title-main">Profibus</span> Communications protocol

Profibus is a standard for fieldbus communication in automation technology and was first promoted in 1989 by BMBF and then used by Siemens. It should not be confused with the Profinet standard for Industrial Ethernet. Profibus is openly published as type 3 of IEC 61158/61784-1.

Modbus or MODBUS is a client/server data communications protocol in the application layer. It was originally published by Modicon in 1979 for use with its programmable logic controllers (PLCs). Modbus has become a de facto standard communication protocol for communication between industrial electronic devices in a wide range of buses and network.

A fieldbus is a member of a family of industrial digital communication networks used for real-time distributed control. Fieldbus profiles are standardized by the International Electrotechnical Commission (IEC) as IEC 61784/61158.

<span class="mw-page-title-main">Motion control</span> Field of automation which studies how to precisely move parts of machines

Motion control is a sub-field of automation, encompassing the systems or sub-systems involved in moving parts of machines in a controlled manner. Motion control systems are extensively used in a variety of fields for automation purposes, including precision engineering, micromanufacturing, biotechnology, and nanotechnology. The main components involved typically include a motion controller, an energy amplifier, and one or more prime movers or actuators. Motion control may be open loop or closed loop. In open loop systems, the controller sends a command through the amplifier to the prime mover or actuator, and does not know if the desired motion was actually achieved. Typical systems include stepper motor or fan control. For tighter control with more precision, a measuring device may be added to the system. When the measurement is converted to a signal that is sent back to the controller, and the controller compensates for any error, it becomes a Closed loop System.

<span class="mw-page-title-main">Industrial Ethernet</span> Use of Ethernet in an industrial environment

Industrial Ethernet (IE) is the use of Ethernet in an industrial environment with protocols that provide determinism and real-time control. Protocols for industrial Ethernet include EtherCAT, EtherNet/IP, PROFINET, POWERLINK, SERCOS III, CC-Link IE, and Modbus TCP. Many industrial Ethernet protocols use a modified media access control (MAC) layer to provide low latency and determinism. Some microprocessors provide industrial Ethernet support.

Fieldbus Foundation was an organization dedicated to a single international, interoperable fieldbus standard. It was established in September 1994 by a merger of WorldFIP North America and the Interoperable Systems Project (ISP). Fieldbus Foundation was a not-for-profit trade consortium that consisted of more than 350 of the world's suppliers and end users of process control and manufacturing automation products. Working together those companies made contributions to the IEC/ISA/FDI and other fieldbus standards development.

<span class="mw-page-title-main">Profinet</span> Computer network protocol

Profinet is an industry technical standard for data communication over Industrial Ethernet, designed for collecting data from, and controlling equipment in industrial systems, with a particular strength in delivering data under tight time constraints. The standard is maintained and supported by Profibus and Profinet International, an umbrella organization headquartered in Karlsruhe, Germany.

Ethernet Powerlink is a real-time protocol for standard Ethernet. It is an open protocol managed by the Ethernet POWERLINK Standardization Group (EPSG). It was introduced by Austrian automation company B&R in 2001.

EtherCAT is an Ethernet-based fieldbus system developed by Beckhoff Automation. The protocol is standardized in IEC 61158 and is suitable for both hard and soft real-time computing requirements in automation technology.

A protocol converter is a device used to convert standard or proprietary protocol of one device to the protocol suitable for the other device or tools to achieve the desired interoperability. Protocols are software installed on the routers, which convert the data formats, data rate and protocols of one network into the protocols of the network in which data is navigating. There are varieties of protocols used in different fields like power generation, transmission and distribution, oil and gas, automation, utilities, and remote monitoring applications. The major protocol translation messages involve conversion of data messages, events, commands, and time synchronization.

In the field of Industrial Control Systems, the interfacing of various control components must provide means to coordinate the signals and commands sent between control modules. While tight coordination is desirable for discrete inputs and outputs, it is especially important in motion controls, where directing the movement of individual axes of motion must be precisely coordinated so that the motion of the entire system follows a desired path. Types of equipment requiring such coordination include metal cutting machine tools, metal forming equipment, assembly machinery, packaging machinery, robotics, printing machinery and material handling equipment. The Sercos interface is a globally standardized open digital interface for the communication between industrial controls, motion devices (drives) and input output devices (I/O). Sercos I and II are standardized in IEC 61491 and EN 61491. Sercos III is specified in standards IEC 61800-7; IEC 61784-1, -2, -3 and IEC 61158. Sercos is designed to provide hard real-time, high performance communications between industrial motion controls and digital servo drives.

EtherNet/IP is an industrial network protocol that adapts the Common Industrial Protocol (CIP) to standard Ethernet. EtherNet/IP is one of the leading industrial protocols in the United States and is widely used in a range of industries including factory, hybrid and process. The EtherNet/IP and CIP technologies are managed by ODVA, Inc., a global trade and standards development organization founded in 1995 with over 300 corporate members.

Profisafe is a standard for a communication protocol for the transmission of safety-relevant data in automation applications with functional safety. This standard was developed jointly by several automation device manufacturers in order to be able to meet the requirements of the legislator and the IFA for safe systems. The required safe function of the protocol has been tested and confirmed by TÜV Süd. The PROFIBUS Nutzerorganisation e.V. in Karlsruhe supervises the standardization for the partner companies and organizes the promotion of this common interface.

<span class="mw-page-title-main">CODESYS</span> Development environment for programming controller applications

Codesys is an integrated development environment for programming controller applications according to the international industrial standard IEC 61131-3.

Sercos III is the third generation of the Sercos interface, a standardized open digital interface for the communication between industrial controls, motion devices, input/output devices (I/O), and Ethernet nodes, such as PCs. Sercos III applies the hard real-time features of the Sercos interface to Ethernet. It is based upon and conforms to the Ethernet standard. Work began on Sercos III in 2003, with vendors releasing first products supporting it in 2005.

RAPIEnet was Korea's first Ethernet international standard for real-time data transmission. It is an Ethernet-based industrial networking protocol, developed in-house by LSIS offers real-time transmission and is registered as an international standard.

<span class="mw-page-title-main">Media Redundancy Protocol</span> Fault recovery system for Ethernet

Media Redundancy Protocol (MRP) is a data network protocol standardized by the International Electrotechnical Commission as IEC 62439-2. It allows rings of Ethernet switches to overcome any single failure with recovery time much faster than achievable with Spanning Tree Protocol. It is suitable to most industrial Ethernet applications.

SafetyNET p is a standard for Ethernet-based fieldbus communication in automation technology. SafetyNET p is suitable as a drive bus due to its real-time behaviour, with cycle times of up to 62.5 µs. In accordance with the standard requirements from EN 61508 and EN 61511, it can be used in safety circuits up to and including Category 3, SIL 3.

<span class="mw-page-title-main">Cyphal</span>

Cyphal is a lightweight protocol designed for reliable intra-vehicle communications using various communications transports, originally destined for CAN bus, but targeting various network types in subsequent revisions. OpenCyphal is an open-source project that aims to provide MIT-licensed implementations of the Cyphal protocol. The project was known as UAVCAN prior to rebranding in March 2022.