PILATUS (detector)

Last updated
Diffraction pattern of the protein thaumatin in its tetragonal crystal form, recorded on a PILATUS 6M at the HZB MX beamline BL14.1. Thaumatin diffraction.png
Diffraction pattern of the protein thaumatin in its tetragonal crystal form, recorded on a PILATUS 6M at the HZB MX beamline BL14.1.

PILATUS is the name of a series of x-ray detectors originally developed by the Paul Scherrer Institute at the Swiss Light Source and further developed and commercialized by DECTRIS. The PILATUS detectors are based on hybrid photon counting (HPC) technology, by which X-rays are converted to electrical signals by the photoelectric effect in a semiconductor sensor layereither silicon or cadmium telluride which is subject to a substantial bias voltage. The electric signals are counted directly by a series of cells in an ASIC bonded to the sensor. Each cellor pixelis a complete detector in itself, equipped with an amplifier, discriminator and counter circuit. This is possible thanks to contemporary CMOS integrated circuit technology.

The direct detection of single photons and the accurate determination of scattering and diffraction intensities over a wide dynamic range have resulted in PILATUS detectors becoming a standard at most synchrotron beamlines and being used for a large variety of X-ray applications, including: small-angle scattering, coherent scattering, X-ray powder diffraction and spectroscopy. [1]

History

The first large-area PILATUS detector was developed at PSI in 2003 as a project stemming from the development of pixel detectors for the CMS experiment at CERN. It became the first HPC detector to be widely used at synchrotron beamlines around the world. [2]

The second generation PILATUS2 systems represented a major technological improvement, featuring a pixel size of 172×172μm, a counter depth of 20 bits and a radiation-tolerant design, necessary for operation with the intense X-ray beams at synchrotrons. [3] In 2006, PILATUS2 was commercialized by DECTRIS. The field of protein crystallography rapidly benefited from the short readout time and noise free signal acquisition of the detector since it substantially reduced the time required to collect data.

The third generation PILATUS3, introduced in 2012, features instant-retrigger technology, [4] which allows for even higher photon counting rates than its predecessors.

Related Research Articles

X-ray fluorescence Emission of secondary X-rays from a material excited by high-energy X-rays

X-ray fluorescence (XRF) is the emission of characteristic "secondary" X-rays from a material that has been excited by being bombarded with high-energy X-rays or gamma rays. The phenomenon is widely used for elemental analysis and chemical analysis, particularly in the investigation of metals, glass, ceramics and building materials, and for research in geochemistry, forensic science, archaeology and art objects such as paintings.

Synchrotron light source

A synchrotron light source is a source of electromagnetic radiation (EM) usually produced by a storage ring, for scientific and technical purposes. First observed in synchrotrons, synchrotron light is now produced by storage rings and other specialized particle accelerators, typically accelerating electrons. Once the high-energy electron beam has been generated, it is directed into auxiliary components such as bending magnets and insertion devices in storage rings and free electron lasers. These supply the strong magnetic fields perpendicular to the beam which are needed to convert high energy electrons into photons.

Beamline Trajectory of a beam of accelerated particles

In accelerator physics, a beamline refers to the trajectory of the beam of accelerated particles, including the overall construction of the path segment along a specific path of an accelerator facility. This part is either

A diffractometer is a measuring instrument for analyzing the structure of a material from the scattering pattern produced when a beam of radiation or particles interacts with it.

Powder diffraction is a scientific technique using X-ray, neutron, or electron diffraction on powder or microcrystalline samples for structural characterization of materials. An instrument dedicated to performing such powder measurements is called a powder diffractometer.

Stanford Synchrotron Radiation Lightsource

The Stanford Synchrotron Radiation Lightsource, a division of SLAC National Accelerator Laboratory, is operated by Stanford University for the Department of Energy. SSRL is a National User Facility which provides synchrotron radiation, a name given to electromagnetic radiation in the x-ray, ultraviolet, visible and infrared realms produced by electrons circulating in a storage ring at nearly the speed of light. The extremely bright light that is produced can be used to investigate various forms of matter ranging from objects of atomic and molecular size to man-made materials with unusual properties. The obtained information and knowledge is of great value to society, with impact in areas such as the environment, future technologies, health, and education.

The National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL) in Upton, New York was a national user research facility funded by the U.S. Department of Energy (DOE). Built from 1978 through 1984, and officially shut down on September 30, 2014, the NSLS was considered a second-generation synchrotron.

High-energy X-rays or HEX-rays are very hard X-rays, with typical energies of 80–1000 keV (1 MeV), about one order of magnitude higher than conventional X-rays used for X-ray crystallography. They are produced at modern synchrotron radiation sources such as the beamline ID15 at the European Synchrotron Radiation Facility (ESRF). The main benefit is the deep penetration into matter which makes them a probe for thick samples in physics and materials science and permits an in-air sample environment and operation. Scattering angles are small and diffraction directed forward allows for simple detector setups.

ANSTO's Australian Synchrotron is a 3 GeV national synchrotron radiation facility located in Clayton, in the south-eastern suburbs of Melbourne, Victoria, which opened in 2007.

Diffraction topography is a quantum beam imaging technique based on Bragg diffraction. Diffraction topographic images ("topographies") record the intensity profile of a beam of X-rays diffracted by a crystal. A topography thus represents a two-dimensional spatial intensity mapping of reflected X-rays, i.e. the spatial fine structure of a Laue reflection. This intensity mapping reflects the distribution of scattering power inside the crystal; topographs therefore reveal the irregularities in a non-ideal crystal lattice. X-ray diffraction topography is one variant of X-ray imaging, making use of diffraction contrast rather than absorption contrast which is usually used in radiography and computed tomography (CT). Topography is exploited to a lesser extends with neutrons and other quantum beams. In the electron microscope community, such technique is called dark field imaging or diffraction contrast imaging.

Medipix Family of photon counting and particle tracking pixel detectors developed by an international collaboration hosted by CERN

Medipix is a family of photon counting and particle tracking pixel detectors developed by an international collaboration, hosted by CERN.

Anomalous X-ray scattering is a non-destructive determination technique within X-ray diffraction that makes use of the anomalous dispersion that occurs when a wavelength is selected that is in the vicinity of an absorption edge of one of the constituent elements of the sample. It is used in materials research to study nanometer sized differences in structure.

National Synchrotron Light Source II

The National Synchrotron Light Source II (NSLS-II) at Brookhaven National Laboratory (BNL) in Upton, New York is a national user research facility funded primarily by the U.S. Department of Energy's (DOE) Office of Science. NSLS-II is one of the world's most advanced synchrotron light sources, designed to produce x-rays 10,000 times brighter than BNL's original light source, the National Synchrotron Light Source (NSLS). NSLS-II supports basic and applied research in energy security, advanced materials synthesis and manufacturing, environment, and human health.

Phase-contrast X-ray imaging Imaging systems using changes in phase

Phase-contrast X-ray imaging or phase-sensitive X-ray imaging is a general term for different technical methods that use information concerning changes in the phase of an X-ray beam that passes through an object in order to create its images. Standard X-ray imaging techniques like radiography or computed tomography (CT) rely on a decrease of the X-ray beam's intensity (attenuation) when traversing the sample, which can be measured directly with the assistance of an X-ray detector. However, in phase contrast X-ray imaging, the beam's phase shift caused by the sample is not measured directly, but is transformed into variations in intensity, which then can be recorded by the detector.

X-ray detector Instrument that can measure properties of X-rays

X-ray detectors are devices used to measure the flux, spatial distribution, spectrum, and/or other properties of X-rays.

Energy-dispersive X-ray diffraction

Energy-dispersive X-ray diffraction (EDXRD) is an analytical technique for characterizing materials. It differs from conventional X-ray diffraction by using polychromatic photons as the source and is usually operated at a fixed angle. With no need for a goniometer, EDXRD is able to collect full diffraction patterns very quickly. EDXRD is almost exclusively used with synchrotron radiation which allows for measurement within real engineering materials.

High energy X-ray imaging technology (HEXITEC) is a family of spectroscopic, single photon counting, pixel detectors developed for high energy X-ray and Ύ-ray spectroscopy applications.

3D X-ray diffraction (3DXRD) is a microscopy technique using hard X-rays to investigate the internal structure of polycrystalline materials in three dimensions. For a given sample, 3DXRD returns the shape, juxtaposition, and orientation of the crystallites ("grains") it is made of. 3DXRD allows investigating micrometer- to millimetre-sized samples with resolution ranging from hundreds of nanometers to micrometers. Other techniques employing X-rays to investigate the internal structure of polycrystalline materials include X-ray diffraction contrast tomography (DCT) and high energy X-ray diffraction (HEDM).

Hybrid pixel detectors are a type of ionizing radiation detector consisting of an array of diodes based on semiconductor technology and their associated electronics. The term “hybrid” stems from the fact that the two main elements from which these devices are built, the semiconductor sensor and the readout chip, are manufactured independently and later electrically coupled by means of a bump-bonding process. Ionizing particles are detected as they produce electron-hole pairs through their interaction with the sensor element, usually made of doped silicon or cadmium telluride. The readout ASIC is segmented into pixels containing the necessary electronics to amplify and measure the electrical signals induced by the incoming particles in the sensor layer.

Dectris Ltd is a Swiss company producing photon counting X-ray detectors. These are used in synchrotrons worldwide as well as in laboratory imaging.

References

  1. Brönnimann, C.; Trüb, P. (2018). "Hybrid pixel photon counting X-ray detectors for synchrotron radiation". In E Jaeschke; S Khan; JR Schneider; JB Hastings (eds.). Synchrotron Light Sources and Free-electron Lasers. Cham, Switzerland: Springer International. pp. 995–1027. doi:10.1007/978-3-319-14394-1_36. ISBN   978-3-319-14393-4.
  2. Broennimann, C; et al. (2003). "Continuous sample rotation data collection for protein crystallography with the PILATUS detector". Nuclear Instruments and Methods A. 510 (1–2): 24–28. Bibcode:2003NIMPA.510...24B. doi:10.1016/S0168-9002(03)01673-5.
  3. Brönnimann, C; et al. (2006). "The PILATUS 1M detector". Journal of Synchrotron Radiation. 13 (2): 120–130. doi:10.1107/S0909049505038665. PMID   16495612.
  4. Loeliger, Teddy; Bronnimann, Christian; Donath, Tilman; Schneebeli, Matthias; Schnyder, Roger; Trub, Peter (2012). "The new PILATUS3 ASIC with instant retrigger capability". 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC). pp. 610–615. doi:10.1109/NSSMIC.2012.6551180. ISBN   978-1-4673-2030-6. S2CID   30028916.