Perceptual Audio Coder

Last updated

Perceptual Audio Coder (PAC) is a lossy audio compression algorithm. It is used by Sirius Satellite Radio for their digital audio radio service.

Contents

Development

The original version of PAC developed by James Johnston and Anibal Ferreira at AT&T's Bell Labs has a flexible format and bitrate. It provides efficient compression of high-quality audio over a variety of formats from 16 kbit/s for a monophonic channel to 1024 kbit/s for a 5.1 format with four or six auxiliary audio channels, and provisions for an ancillary (fixed rate) and auxiliary (variable rate) side data channel. For stereo audio signals, it is claimed that it provides near-CD quality at about 56-64 kbit/s, with transparent coding at bit rates approaching 128 kbit/s. [1]

Over the years PAC has evolved considerably. A known software implementation of this codec is CelestialTech's AudioLib. Later, it was considerably improved and renamed to ePAC (enhanced Perceptual Audio Coder) by Lucent, available in the AudioVeda music library manager.[ citation needed ]

iBiquity initially tested PAC for the HD-Radio IBOC digital radio upgrade for FM and AM, but chose an MPEG4-derived codec, HE-AAC, instead. MPEG-2 AAC is substantially similar to the original AT&T PAC algorithm written by Johnston and Ferreira, including the specifics of stereo pair coding, bitstream sectioning, handling of 1 or 2 channels at a time, multiple codebooks responding to the same largest absolute value, and block switching triggers. The version of PAC tested for the MPEG-NBC (later to become AAC) trials used 1024/128 sample block lengths, rather than 512/128 sample block lengths.

See also

Related Research Articles

In information theory, data compression, source coding, or bit-rate reduction is the process of encoding information using fewer bits than the original representation. Any particular compression is either lossy or lossless. Lossless compression reduces bits by identifying and eliminating statistical redundancy. No information is lost in lossless compression. Lossy compression reduces bits by removing unnecessary or less important information. Typically, a device that performs data compression is referred to as an encoder, and one that performs the reversal of the process (decompression) as a decoder.

<span class="mw-page-title-main">MP3</span> Digital audio format

MP3 is a coding format for digital audio developed largely by the Fraunhofer Society in Germany under the lead of Karlheinz Brandenburg, with support from other digital scientists in the United States and elsewhere. Originally defined as the third audio format of the MPEG-1 standard, it was retained and further extended — defining additional bit-rates and support for more audio channels — as the third audio format of the subsequent MPEG-2 standard. A third version, known as MPEG 2.5 — extended to better support lower bit rates — is commonly implemented, but is not a recognized standard.

MPEG-1 is a standard for lossy compression of video and audio. It is designed to compress VHS-quality raw digital video and CD audio down to about 1.5 Mbit/s without excessive quality loss, making video CDs, digital cable/satellite TV and digital audio broadcasting (DAB) practical.

Speech coding is an application of data compression to digital audio signals containing speech. Speech coding uses speech-specific parameter estimation using audio signal processing techniques to model the speech signal, combined with generic data compression algorithms to represent the resulting modeled parameters in a compact bitstream.

Windows Media Audio (WMA) is a series of audio codecs and their corresponding audio coding formats developed by Microsoft. It is a proprietary technology that forms part of the Windows Media framework. WMA consists of four distinct codecs. The original WMA codec, known simply as WMA, was conceived as a competitor to the popular MP3 and RealAudio codecs. WMA Pro, a newer and more advanced codec, supports multichannel and high resolution audio. A lossless codec, WMA Lossless, compresses audio data without loss of audio fidelity. WMA Voice, targeted at voice content, applies compression using a range of low bit rates. Microsoft has also developed a digital container format called Advanced Systems Format to store audio encoded by WMA.

Adaptive Transform Acoustic Coding (ATRAC) is a family of proprietary audio compression algorithms developed by Sony. MiniDisc was the first commercial product to incorporate ATRAC in 1992. ATRAC allowed a relatively small disc like MiniDisc to have the same running time as CD while storing audio information with minimal loss in perceptible quality. Improvements to the codec in the form of ATRAC3, ATRAC3plus, and ATRAC Advanced Lossless followed in 1999, 2002, and 2006 respectively.

Dolby Digital, originally synonymous with Dolby AC-3, is the name for what has now become a family of audio compression technologies developed by Dolby Laboratories. Formerly named Dolby Stereo Digital until 1995, the audio compression is lossy, based on the modified discrete cosine transform (MDCT) algorithm. The first use of Dolby Digital was to provide digital sound in cinemas from 35 mm film prints; today, it is also used for applications such as TV broadcast, radio broadcast via satellite, digital video streaming, DVDs, Blu-ray discs and game consoles.

MPEG-1 Audio Layer II or MPEG-2 Audio Layer II is a lossy audio compression format defined by ISO/IEC 11172-3 alongside MPEG-1 Audio Layer I and MPEG-1 Audio Layer III (MP3). While MP3 is much more popular for PC and Internet applications, MP2 remains a dominant standard for audio broadcasting.

Advanced Audio Coding (AAC) is an audio coding standard for lossy digital audio compression. Designed to be the successor of the MP3 format, AAC generally achieves higher sound quality than MP3 encoders at the same bit rate.

MPEG-4 Part 3 or MPEG-4 Audio is the third part of the ISO/IEC MPEG-4 international standard developed by Moving Picture Experts Group. It specifies audio coding methods. The first version of ISO/IEC 14496-3 was published in 1999.

In telecommunications and computing, bit rate is the number of bits that are conveyed or processed per unit of time.

mp3PRO is an unmaintained proprietary audio compression codec that combines the MP3 audio format with the spectral band replication (SBR) compression method. At the time it was developed it could reduce the size of a stereo MP3 by as much as 50% while maintaining the same relative quality. This works, fundamentally, by discarding the higher half of the frequency range and algorithmically replicating that information while decoding.

Musepack or MPC is an open source lossy audio codec, specifically optimized for transparent compression of stereo audio at bitrates of 160–180 kbit/s. It was formerly known as MPEGplus, MPEG+ or MP+.

<span class="mw-page-title-main">High-Efficiency Advanced Audio Coding</span> Audio codec

High-Efficiency Advanced Audio Coding (HE-AAC) is an audio coding format for lossy data compression of digital audio defined as an MPEG-4 Audio profile in ISO/IEC 14496–3. It is an extension of Low Complexity AAC (AAC-LC) optimized for low-bitrate applications such as streaming audio. The usage profile HE-AAC v1 uses spectral band replication (SBR) to enhance the modified discrete cosine transform (MDCT) compression efficiency in the frequency domain. The usage profile HE-AAC v2 couples SBR with Parametric Stereo (PS) to further enhance the compression efficiency of stereo signals.

The MPEG-4 Low Delay Audio Coder is audio compression standard designed to combine the advantages of perceptual audio coding with the low delay necessary for two-way communication. It is closely derived from the MPEG-2 Advanced Audio Coding (AAC) standard. It was published in MPEG-4 Audio Version 2 and in its later revisions.

MPEG Surround, also known as Spatial Audio Coding (SAC) is a lossy compression format for surround sound that provides a method for extending mono or stereo audio services to multi-channel audio in a backwards compatible fashion. The total bit rates used for the core and the MPEG Surround data are typically only slightly higher than the bit rates used for coding of the core. MPEG Surround adds a side-information stream to the core bit stream, containing spatial image data. Legacy stereo playback systems will ignore this side-information while players supporting MPEG Surround decoding will output the reconstructed multi-channel audio.

aptX Family of proprietary audio codecs owned by Qualcomm

aptX is a family of open audio codec compression algorithms, with a heavy emphasis on wireless audio applications.

<span class="mw-page-title-main">Audio coding format</span> Digitally coded format for audio signals

An audio coding format is a content representation format for storage or transmission of digital audio. Examples of audio coding formats include MP3, AAC, Vorbis, FLAC, and Opus. A specific software or hardware implementation capable of audio compression and decompression to/from a specific audio coding format is called an audio codec; an example of an audio codec is LAME, which is one of several different codecs which implements encoding and decoding audio in the MP3 audio coding format in software.

References

  1. Johnston, James D.; Ferreira, Anibal J. (Mar 1992). "Sum-difference stereo transform coding" (PDF). [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing. pp. 569–572 vol.2. doi:10.1109/ICASSP.1992.225993. ISBN   0-7803-0532-9. S2CID   59104987.