Perpendicular recording

Last updated

Perpendicular recording (or perpendicular magnetic recording, PMR), also known as conventional magnetic recording (CMR), is a technology for data recording on magnetic media, particularly hard disks. It was first proven advantageous in 1976 by Shun-ichi Iwasaki, then professor of the Tohoku University in Japan, and first commercially implemented in 2005. The first industry-standard demonstration showing unprecedented advantage of PMR over longitudinal magnetic recording (LMR) at nanoscale dimensions was made in 1998 at IBM Almaden Research Center in collaboration with researchers of Data Storage Systems Center (DSSC) [1] – a National Science Foundation (NSF) Engineering Research Center (ERCs) at Carnegie Mellon University (CMU). [2]

Contents

Advantages

Perpendicular recording can deliver more than three times the storage density of traditional longitudinal recording. [3] In 1986, Maxell announced a floppy disk using perpendicular recording that could store 100 kB per inch (39 kB/cm). [4] Perpendicular recording was later used by Toshiba in 3.5" floppy disks in 1989 to permit 2.88 MB of capacity (ED or extra-high density), but they failed to succeed in the marketplace. Since about 2005, the technology has come into use for hard disk drives. Hard disk technology with longitudinal recording has an estimated limit of 100 to 200 gigabit per square inch (16 to 31 Gb/cm2) due to the superparamagnetic effect, though this estimate is constantly changing. Perpendicular recording was predicted in 2007 to allow information densities of up to around 1,000 Gbit /in2 (160 Gbit/cm2). [5] As of August 2010, drives with densities of 667 Gb/in2 (103.4 Gb/cm2) were available commercially. In 2016 the commercially available density was at least 1,300 Gb/in2 (200 Gb/cm2). [6] In late 2021 the Seagate disk with the highest density was a consumer-targeted 2.5" BarraCuda. It used 1,307 Gb/in2 (202.6 Gb/cm2) [7] density. Other disks from the manufacturer used 1,155 Gb/in2 (179.0 Gb/cm2) and 1,028 Gb/in2 (159.3 Gb/cm2).

Technology

Diagram of perpendicular recording. Note how the magnetic flux travels through the second layer of the platter. Perpendicular Recording Diagram.svg
Diagram of perpendicular recording. Note how the magnetic flux travels through the second layer of the platter.

The main challenge in designing magnetic information storage media is to retain the magnetization of the medium despite thermal fluctuations caused by the superparamagnetic limit. If the thermal energy is too high, there may be enough energy to reverse the magnetization in a region of the medium, destroying the data stored there. The energy required to reverse the magnetization of a magnetic region is the product of the size of the magnetic region and the uniaxial anisotropy constant Ku, which is in turn related to the magnetic coercivity of the material. The larger the magnetic region is and the higher the magnetic coercivity of the material, the more stable the medium is. Conversely, there is a minimum stable size for a magnetic region at a given temperature and coercivity. If it is any smaller it is likely to be spontaneously de-magnetized by local thermal fluctuations. Perpendicular recording uses higher coercivity materials because the head's write field penetrates the medium more efficiently in the perpendicular geometry.

The popular explanation for the advantage of perpendicular recording is that it achieves higher storage densities by aligning the poles of the magnetic elements, which represent bits, perpendicularly to the surface of the disk platter, as shown in the illustration. In this not-quite-accurate explanation, aligning the bits in this manner takes less platter area than what would have been required had they been placed longitudinally. This means cells can be placed closer together on the platter, thus increasing the number of magnetic elements that can be stored in a given area.

Trailing shield head with granular media. This head design provides higher field gradients and more advantageous field angles for perpendicular recording. Trailing Shield Write Head.jpg
Trailing shield head with granular media. This head design provides higher field gradients and more advantageous field angles for perpendicular recording.

The true picture is a bit more complex. Perpendicular recording does indeed penetrate more deeply into the magnetic storage medium, thereby allowing a closer bit spacing without losing overall bit volume. [8] However, the main density advantage comes from the use of a magnetically "stiffer" (higher coercivity) material as the storage medium.

This is possible because in a perpendicular arrangement the magnetic flux is guided through a magnetically soft (and relatively thick) underlayer beneath the "hard" data storage layer (considerably complicating and thickening the total disk structure). This underlayer can be thought of as part of the write head, completing a magnetic circuit which transects the data storage layer. Having more of the magnetic flux penetrate the data storage layer makes the write head more efficient than a longitudinal head, produces a stronger write field gradient, and thereby allows the use of the higher coercivity magnetic storage medium.

In the early 2000s, three important factors came together which allowed perpendicular recording to exceed the capabilities of longitudinal recording and led to commercial success. [9] First, the development of media with an oxide-segregant exchange-break between grains. [10] Second, the use of a thin 'cap' on the media to control the level of exchange-coupling between grains [11] and to enhance propagation of switching through the thickness of the medium. [12] Third, the expiration in 2005 of the patent for the trailing-shield head invented in 1985 by Michael Mallary. [13] This head offered higher field gradients and more favorable field angles than a simple pole head. [14]

Implementations

Vertimag Systems Corporation, founded by Professor Jack Judy of the University of Minnesota. As a colleague of Iwasaki, created the first perpendicular disk drives, heads and disks in 1984. 5 MB removable floppy drives were demonstrated in IBM PCs to major computer manufacturers. Vertimag went out of business during the PC crash of 1985.

Toshiba produced the first commercially available disk drive (1.8") using this technology in 2005. [15] Shortly thereafter in January 2006, Seagate Technology began shipping its first laptop sized 2.5-inch (64 mm) hard drive using perpendicular recording technology, the Seagate Momentus 5400.3. Seagate also announced at that time that the majority of its hard disk storage devices would utilize the new technology by the end of 2006.

In April 2006, Seagate began shipping the first 3.5 inch perpendicular recording hard drive, the Cheetah 15K.5, with up to 300GB storage, running at 15,000 rpm and claim to have 30% better performance than their predecessors with a data rate of 73–125 Mbyte/s.

In April 2006, Seagate announced the Barracuda 7200.10, a series of 3.5-inch (89 mm) HDDs utilizing perpendicular recording with a maximum capacity of 750 GB. Drives began shipping in late April 2006.

Hitachi announced a 20 GB Microdrive. Hitachi's first laptop drive (2.5-inch) based on perpendicular recording became available in mid-2006, featuring a maximum capacity of 160 GB.

In June 2006, Toshiba announced a 2.5-inch (64 mm) hard drive of 200-GB capacity with mass production starting in August, effectively raising the standard of mobile storage capacity.

In July 2006, Western Digital announced volume production of its WD Scorpio 2.5-inch (64 mm) hard drives using WD-designed and manufactured perpendicular magnetic recording (PMR) technology to achieve 80 GB-per-platter density.

In August 2006 Fujitsu extended its 2.5-inch (64 mm) lineup to include SATA models utilizing perpendicular recording, offering up to 160GB capacity.

In December 2006 Toshiba said its new 100GB two-platter HDD is based on perpendicular magnetic recording (PMR) and was designed in the "short" 1.8-inch form factor. [16]

In December 2006 Fujitsu announced its MHX2300BT series of 2.5-inch (64 mm) hard disk drives, with capacities of 250 and 300 GB.

In January 2007 Hitachi announced the first 1-terabyte hard drive [17] using the technology, which they then delivered in April 2007. [18]

In July 2008 Seagate Technology announced a 1.5 terabyte SATA hard drive using PMR technology.

In January 2009 Western Digital announced the first 2.0 terabyte SATA hard drive using PMR technology.

In February 2009 Seagate Technology announced the first 7,200rpm 2.0 terabyte SATA hard drive using PMR technology with choice of SATA 2 or SAS 2.0 interface.

See also

Related Research Articles

<span class="mw-page-title-main">Hard disk drive</span> Electro-mechanical data storage device

A hard disk drive (HDD), hard disk, hard drive, or fixed disk, is an electro-mechanical data storage device that stores and retrieves digital data using magnetic storage with one or more rigid rapidly rotating platters coated with magnetic material. The platters are paired with magnetic heads, usually arranged on a moving actuator arm, which read and write data to the platter surfaces. Data is accessed in a random-access manner, meaning that individual blocks of data can be stored and retrieved in any order. HDDs are a type of non-volatile storage, retaining stored data when powered off. Modern HDDs are typically in the form of a small rectangular box.

<span class="mw-page-title-main">Hard disk drive platter</span> Circular disk on which magnetic data is stored in a hard disk drive

A hard disk drive platter or hard disk is the circular magnetic disk on which digital data is stored in a hard disk drive. The rigid nature of the platters is what gives them their name. Hard drives typically have several platters which are mounted on the same spindle. A platter can store information on both sides, typically requiring two recording heads per platter, one per surface.

<span class="mw-page-title-main">Disk read-and-write head</span> Small, movable part of a disk drive

A disk read-and-write head is the small part of a disk drive which moves above the disk platter and transforms the platter's magnetic field into electric current or, vice versa, transforms electric current into magnetic field. The heads have gone through a number of changes over the years.

<span class="mw-page-title-main">Western Digital</span> American digital storage company

Western Digital Corporation is an American computer drive manufacturer and data storage company, headquartered in San Jose, California. It designs, manufactures and sells data technology products, including data storage devices, data center systems and cloud storage services.

<span class="mw-page-title-main">Seagate Technology</span> American data storage company

Seagate Technology Holdings plc is an American data storage company. It was incorporated in 1978 as Shugart Technology and commenced business in 1979. Since 2010, the company has been incorporated in Dublin, Ireland, with operational headquarters in Fremont, California, United States.

<span class="mw-page-title-main">Magnetic storage</span> Recording of data on a magnetizable medium

Magnetic storage or magnetic recording is the storage of data on a magnetized medium. Magnetic storage uses different patterns of magnetisation in a magnetizable material to store data and is a form of non-volatile memory. The information is accessed using one or more read/write heads.

Density is a measure of the quantity of information bits that can be stored on a given length of track, area of the surface, or in a given volume of a computer storage medium. Generally, higher density is more desirable, for it allows more data to be stored in the same physical space. Density therefore has a direct relationship to storage capacity of a given medium. Density also generally affects the performance within a particular medium, as well as price.

Millipede memory is a form of non-volatile computer memory. It promised a data density of more than 1 terabit per square inch, which is about the limit of the perpendicular recording hard drives. Millipede storage technology was pursued as a potential replacement for magnetic recording in hard drives and a means of reducing the physical size of the technology to that of flash media.

<span class="mw-page-title-main">Microdrive</span> One-inch hard disk format by IBM and Hitachi

The Microdrive is a type of miniature, 1-inch hard disk produced by IBM and Hitachi. These rotational media storage devices were designed to fit in CompactFlash (CF) Type II slots.

In computing, a hybrid drive is a logical or physical storage device that combines a faster storage medium such as solid-state drive (SSD) with a higher-capacity hard disk drive (HDD). The intent is adding some of the speed of SSDs to the cost-effective storage capacity of traditional HDDs. The purpose of the SSD in a hybrid drive is to act as a cache for the data stored on the HDD, improving the overall performance by keeping copies of the most frequently used data on the faster SSD drive.

Heat-assisted magnetic recording (HAMR) is a magnetic storage technology for greatly increasing the amount of data that can be stored on a magnetic device such as a hard disk drive by temporarily heating the disk material during writing, which makes it much more receptive to magnetic effects and allows writing to much smaller regions.

<span class="mw-page-title-main">HGST</span> Computer storage device manufacturer

HGST, Inc. was a manufacturer of hard disk drives, solid-state drives, and external storage products and services.

<span class="mw-page-title-main">Travelstar</span> Brand of hard disk drive

Travelstar was a brand of 2.5-inch hard disk drive (HDD) that was introduced by IBM in 1994 with the announcement of the Travelstar LP. At 12.5 mm high with two platters, they were available in 360, 540 and 720 MB capacities. Initial models were industry-leading for small form factor HDDs in terms of areal density, data transfer rates and shock tolerance (500g).

Mark Howard Kryder was Seagate Corp.'s senior vice president of research and chief technology officer. Kryder holds a Bachelor of Science degree in electrical engineering from Stanford University and a Ph.D. in electrical engineering and physics from the California Institute of Technology.

<span class="mw-page-title-main">History of hard disk drives</span> Development of computer data storage

In 1953, IBM recognized the immediate application for what it termed a "Random Access File" having high capacity and rapid random access at a relatively low cost. After considering technologies such as wire matrices, rod arrays, drums, drum arrays, etc., the engineers at IBM's San Jose California laboratory invented the hard disk drive. The disk drive created a new level in the computer data hierarchy, then termed Random Access Storage but today known as secondary storage, less expensive and slower than main memory but faster and more expensive than tape drives.

Patterned media is a potential future hard disk drive technology to record data in magnetic islands, as opposed to current hard disk drive technology where each bit is stored in 20–30 magnetic grains within a continuous magnetic film. The islands would be patterned from a precursor magnetic film using nanolithography. It is one of the proposed technologies to succeed perpendicular recording due to the greater storage densities it would enable. BPM was introduced by Toshiba in 2010.

<span class="mw-page-title-main">Seagate Barracuda</span> Series of hard disk drives produced by Seagate Technology

The Seagate Barracuda is a series of hard disk drives and later solid state drives produced by Seagate Technology that was first introduced in 1993.

Shingled magnetic recording (SMR) is a magnetic storage data recording technology used in hard disk drives (HDDs) to increase storage density and overall per-drive storage capacity. Conventional hard disk drives record data by writing non-overlapping magnetic tracks parallel to each other, while shingled recording writes new tracks that overlap part of the previously written magnetic track, leaving the previous track narrower and allowing higher track density. Thus, the tracks partially overlap similar to roof shingles. This approach was selected because, if the writing head is made too narrow, it cannot provide the very high fields required in the recording layer of the disk.

<span class="mw-page-title-main">Two-dimensional magnetic recording</span>

Two-dimensional magnetic recording (TDMR) is a technology introduced in 2017 in hard disk drives (HDD) used for computer data storage. Most of the world's data is recorded on HDDs, and there is continuous pressure on manufacturers to create greater data storage capacity in a given HDD form-factor and for a given cost. In an HDD, data is stored using magnetic recording on a rotating magnetic disk and is accessed through a write-head and read-head. TDMR allows greater storage capacity by advantageously combining signals simultaneously from multiple read-back heads to enhance the recovery of one or more data-tracks. In this manner, data can be stored with higher areal-density on the disks thus providing higher capacity in each HDD. TDMR is a read-back technology and thus applies equally well to future recording (writing) technologies such as heat-assisted magnetic recording (HAMR) and microwave-assisted magnetic recording (MAMR).

References

  1. https://www.dssc.ece.cmu.edu/
  2. S. Khizroev, M. Kryder, Y. Ikeda, K. Rubin, P. Arnett, M. Best, D. A. Thompson, "Recording heads with trackwidths suitable for 100 Gbit/in2 density, "IEEE Trans. Magn., 35 (5), 2544–6 (1999) Archived 14 December 2013 at the Wayback Machine
  3. Merritt, Rick (26 September 2005). "Hard drives go perpendicular". EE Times . Archived from the original on 5 April 2023. Retrieved 26 November 2023.
  4. Bateman, Selby (March 1986). "The Future of Mass Storage". COMPUTE!. No. 70. COMPUTE! Publications. p. 23. Retrieved 7 October 2018.
  5. "Hitachi News Release – Hitachi achieves nanotechnology milestone for quadrupling terabyte hard drive". 15 October 2007. Archived from the original on 28 April 2017. Retrieved 20 February 2008.
  6. "Seagate Barracuda Compute SATA 2.5" Product Manual, October 2016" (PDF). Retrieved 9 May 2021.
  7. "BarraCuda 4TB, 5TB (2.5) Product Manual" (PDF). 30 September 2020. Retrieved 29 October 2021.
  8. 1 2 Wood, Roger (March 2009). "Future hard disk drive systems". Journal of Magnetism and Magnetic Materials. 321 (6): 555–561. Bibcode:2009JMMM..321..555W. doi:10.1016/j.jmmm.2008.07.027.
  9. "2005: Perpendicular Magnetic Recording arrives". Computer History Museum, Data Storage Milestone. Retrieved 10 March 2024.
  10. "Magnetic Recording Media", 1.5.3 Encyclopedia of Physical Science and Technology (Third Edition), 2003
  11. Sonobe, Y.; Tham, K.K.; Umezawa, T.; Takasu, C.; Dumaya, J.A.; Leo, P.Y. (2006). "Effect of continuous layer in CGC perpendicular recording media". Journal of Magnetism and Magnetic Materials. 303 (2): 292–295. Bibcode:2006JMMM..303..292S. doi:10.1016/j.jmmm.2006.01.164.
  12. Victora, R.H.; Shen, X. (2005). "Exchange coupled composite media for perpendicular magnetic recording". IEEE Transactions on Magnetics. 41 (10): 2828–2833. Bibcode:2005ITM....41.2828V. doi:10.1109/TMAG.2005.855263.
  13. USRE33949E,Mallary, Michael L.&Das, Shyam C.,"Vertical magnetic recording arrangement",issued 1992-06-02
  14. "Perpendicular Magnetic Recording Technology" white paper, HGST Nov 2007
  15. "First Perpendicular Recording HDD – Toshiba Press Release". Archived from the original on 14 April 2009. Retrieved 16 March 2008.
  16. "Briefly: Foxconn to build 1.5m MBPs; 100GB iPod drive". AppleInsider. Archived from the original on 8 December 2006. Retrieved 6 December 2006.
  17. "Hitachi Introduces 1-Terabyte Hard Drive". PC World. Archived from the original on 12 January 2007. Retrieved 10 January 2007.
  18. "Hitachi gets its one terabyte Deskstar 7K1000 drives out the door". Engadget. Archived from the original on 17 September 2017. Retrieved 8 September 2017.