Phenylsulfinic acid

Last updated
Phenylsulfinic acid
Phenylsulfinic-acid-2D-skeletal.png
Phenylsulfinic-acid-3D-balls.png
Names
Preferred IUPAC name
Benzenesulfinic acid
Other names
  • Phenylsulfinic acid
  • Phenyl sulfinic acid
  • Benzene sulfinic acid
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.009.591 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C6H6O2S/c7-9(8)6-4-2-1-3-5-6/h1-5H,(H,7,8) X mark.svgN
    Key: JEHKKBHWRAXMCH-UHFFFAOYSA-N X mark.svgN
  • InChI=1/C6H6O2S/c7-9(8)6-4-2-1-3-5-6/h1-5H,(H,7,8)
    Key: JEHKKBHWRAXMCH-UHFFFAOYAY
  • C1=CC=C(C=C1)S(=O)O
Properties
C6H6O2S
Molar mass 142.17 g·mol−1
AppearanceColorless prisms
Density 1.45 g/cm3
Melting point 83 to 84 °C (181 to 183 °F; 356 to 357 K)
Acidity (pKa)2.76 (H2O) [1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)
Infobox references

Phenylsulfinic acid is an organosulfur compound with the formula C6H5SO2H. It is a colorless or white crystalline solid that is usually stored in the form of its sodium salt. In aqueous solution it is strongly acidic and is easily oxidized in air. Phenylsulfinic acid and its esters are chiral.

Contents

Acidity

There is a large range of pKa values in the literature, with most authors giving a value of around 1.30. [2] [3] [4] This inconsistency can be explained by differences in ionic strength between quoted values. By measuring the pKa at various ionic strengths and extrapolating to zero ionic strength, the pKa of phenylsulfinic acid was determined to be 2.76. [1] This makes phenylsulfinic acid a stronger acid than its corresponding carboxylic acid, benzoic acid (pKa = 4.2), but weaker than its corresponding sulfonic acid, benzenesulfonic acid (pKa = 6.5). [5]

Preparation

Phenylsulfinic acid can be prepared in several ways, most easily through reduction of sulfonyl chlorides with zinc dust or iron. [2] However other starting materials can be used. Due to the air sensitivity of this compound it is often formed as a salt.

2 C6H5SO2Cl + 2 Zn → (C6H5SO2)2Zn + ZnCl2
(C6H5SO2)2Zn + Na2CO3 → 2 C6H5SO2Na + ZnCO3

A convenient method is the reduction of the sulfonyl chloride or sulfonyl fluoride with sodium sulfite, producing the acid instead of a salt: [3]

C6H5SO2Cl + Na2SO3 + H2O → C6H5SO2H + NaCl + NaHSO4

Many other methods have been reported for production of sulfinic acids such as the use tin(II) chloride, or the Grignard reagent with sulfur dioxide. [4] The preparation of sulfinic acids by the oxidation of thiols is difficult due to overoxidation.

Properties

In sulfinic acids, sulfur has the +4 oxidation state. They are prone to oxidation to sulphonic acids as well as reduction via sulphenic acids (+2) to thiols. [2]

Sulphinic acid derivatives disproportionate in the presence of acid: [2]

2 PhSO2H → PhSO2SOPh + H2O
PhSO2SOPh → PhSO2• + PhSO → PhSO3SPh
PhSO3SPh + PhSO2H → PhSO3H + PhSO2SPh

When phenylsulfinic acid reacts with sulfur to give thiosulfinates and thiosulfinic acids. [6]

Use

The main use of phenylsulfinic acid is for the asymmetric synthesis of carbon-carbon bonds due to its ability to stabilize negative charges on an adjacent carbon atom. Phenylsulfinic acid has been a component for electroplating of palladium alloys. [7]

Related Research Articles

Thiol Any organic compound having a sulfanyl group

A thiol or thiol derivative is any organosulfur compound of the form R−SH, where R represents an alkyl or other organic substituent. The –SH functional group itself is referred to as either a thiol group or a sulfhydryl group, or a sulfanyl group. Thiols are the sulfur analogue of alcohols, and the word is a blend of "thio-" with "alcohol", where the first word deriving from Greek θεῖον (theion) meaning "sulfur".

Zinc chloride Chemical compound

Zinc chloride is the name of chemical compounds with the formula ZnCl2 and its hydrates. Zinc chlorides, of which nine crystalline forms are known, are colorless or white, and are highly soluble in water. This white salt is hygroscopic and even deliquescent. Samples should therefore be protected from sources of moisture, including the water vapor present in ambient air. Zinc chloride finds wide application in textile processing, metallurgical fluxes, and chemical synthesis. No mineral with this chemical composition is known aside from the very rare mineral simonkolleite, Zn5(OH)8Cl2·H2O.

Sulfonic acid

A sulfonic acid (or sulphonic acid) refers to a member of the class of organosulfur compounds with the general formula R−S(=O)2−OH, where R is an organic alkyl or aryl group and the S(=O)2(OH) group a sulfonyl hydroxide. As a substituent, it is known as a sulfo group. A sulfonic acid can be thought of as sulfuric acid with one hydroxyl group replaced by an organic substituent. The parent compound (with the organic substituent replaced by hydrogen) is the parent sulfonic acid, HS(=O)2(OH), a tautomer of sulfurous acid, S(=O)(OH)2. Salts or esters of sulfonic acids are called sulfonates.

Thionyl chloride Chemical compound

Thionyl chloride is an inorganic compound with the chemical formula SOCl
2
. It is a moderately volatile colourless liquid with an unpleasant acrid odour. Thionyl chloride is primarily used as a chlorinating reagent, with approximately 45,000 tonnes per year being produced during the early 1990s, but is occasionally also used as a solvent. It is toxic, reacts with water, and is also listed under the Chemical Weapons Convention as it may be used for the production of chemical weapons.

In chemistry, disproportionation, sometimes called dismutation, is a redox reaction in which one compound of intermediate oxidation state converts to two compounds, one of higher and one of lower oxidation states. More generally, the term can be applied to any desymmetrizing reaction of the following type: 2 A → A' + A", regardless of whether it is a redox or some other type of process.

Organosulfur compounds are organic compounds that contain sulfur. They are often associated with foul odors, but many of the sweetest compounds known are organosulfur derivatives, e.g., saccharin. Nature abounds with organosulfur compounds—sulfur is essential for life. Of the 20 common amino acids, two are organosulfur compounds, and the antibiotics penicillin and sulfa drugs both contain sulfur. While sulfur-containing antibiotics save many lives, sulfur mustard is a deadly chemical warfare agent. Fossil fuels, coal, petroleum, and natural gas, which are derived from ancient organisms, necessarily contain organosulfur compounds, the removal of which is a major focus of oil refineries.

Sulfone

A sulfone is a chemical compound containing a sulfonyl functional group attached to two carbon atoms. The central hexavalent sulfur atom is double-bonded to each of two oxygen atoms and has a single bond to each of two carbon atoms, usually in two separate hydrocarbon substituents.

Thiophenol Chemical compound

Thiophenol is an organosulfur compound with the formula C6H5SH, sometimes abbreviated as PhSH. This foul-smelling colorless liquid is the simplest aromatic thiol. The chemical structures of thiophenol and its derivatives are analogous to phenols except the oxygen atom in the hydroxyl group (-OH) bonded to the aromatic ring is replaced by a sulfur atom. The prefix thio- implies a sulfur-containing compound and when used before a root word name for a compound which would normally contain an oxygen atom, in the case of 'thiol' that the alcohol oxygen atom is replaced by a sulfur atom.

Triflic acid Chemical compound

Triflic acid, the short name for trifluoromethanesulfonic acid, TFMS, TFSA, HOTf or TfOH, is a sulfonic acid with the chemical formula CF3SO3H. It is one of the strongest known acids. Triflic acid is mainly used in research as a catalyst for esterification. It is a hygroscopic, colorless, slightly viscous liquid and is soluble in polar solvents.

Sulfinic acid

Sulfinic acids are oxoacids of sulfur with the structure RSO(OH). In these organosulfur compounds, sulfur is pyramidal.

Sulfonyl halide groups occur when a sulfonyl functional group is singly bonded to a halogen atom. They have the general formula RSO2X where X is a halogen. The stability of sulfonyl halides decreases in the order fluorides > chlorides > bromides > iodides, all four types being well known. The sulfonyl chlorides and fluorides are of dominant importance in this series.

Triphenylphosphine oxide Chemical compound

Triphenylphosphine oxide (often abbreviated TPPO) is the organophosphorus compound with the formula OP(C6H5)3, also written as Ph3PO or PPh3O (Ph = C6H5). This colourless crystalline compound is a common but potentially useful waste product in reactions involving triphenylphosphine. It is a popular reagent to induce the crystallizing of chemical compounds.

Sulfenic acid

A sulfenic acid is an organosulfur compound and oxoacid with the general formula RSOH. It is the first member of the family of organosulfur oxoacids, which also include sulfinic acids and sulfonic acids, RSO2H and RSO3H, respectively. The base member of the sulfenic acid series with R = H is hydrogen thioperoxide.

4-Toluenesulfonyl chloride Chemical compound

4-Toluenesulfonyl chloride (p-toluenesulfonyl chloride, toluene-p-sulfonyl chloride) is an organic compound with the formula CH3C6H4SO2Cl. This white, malodorous solid is a reagent widely used in organic synthesis. Abbreviated TsCl or TosCl, it is a derivative of toluene and contains a sulfonyl chloride (−SO2Cl) functional group.

Benzenesulfonic acid Chemical compound

Benzenesulfonic acid (conjugate base benzenesulfonate) is an organosulfur compound with the formula C6H6O3S. It is the simplest aromatic sulfonic acid. It forms white deliquescent sheet crystals or a white waxy solid that is soluble in water and ethanol, slightly soluble in benzene and insoluble in nonpolar solvents like diethyl ether. It is often stored in the form of alkali metal salts. Its aqueous solution is strongly acidic.

Thiosulfinate

In organosulfur chemistry, thiosulfinate is a functional group consisting of the linkage R-S(O)-S-R (R are organic substituents). Thiolsulfinates are also named as alkanethiosulfinic (or arenethiosulfinic) acid esters. They are the first member of a family of compounds containing an oxidized disulfide bond. Other members of this family include thiosulfonates (R-SO2-S-R), α-disulfoxides (R-S(O)-S(O)-R), sulfinyl sulfones (R-S(O)-SO2-R), and α-disulfones (R-SO2-SO2-R), all of which are known. The thiosulfinate group can occur in cyclic as well as acyclic structures.

Sulfinamide

Sulfinamide is a functional group in organosulfur chemistry with the structural formula RS(O)NR'2. This functionality is composed of a sulfur-carbon (S-C) and sulfur-nitrogen (S-N) single bonds, as well as a sulfur-oxygen double bond (S=O), resulting in a tetravalent sulfur centre. As a non-bonding electron pair is also present on the sulfur, these compounds are also chiral. They are sometimes referred to as S-chiral sulfinamides. Sulfinamides are amides of sulfinic acid.

Thiocarboxylic acids are organosulfur compounds related to carboxylic acids by replacement of one of the oxygen atoms with a sulfur atom. Two tautomers are possible: a thione form (RC OH) and a thiol form (RC SH). These are sometimes also referred to as "carbothioic O-acid" and "carbothioic S-acid" respectively. Of these the thiol form is most common.

Sulfinyl halide

Sulfinyl halide have the general formula R−S(O)−X, where X is a halogen. They are intermediate in oxidation level between sulfenyl halides, R−S−X, and sulfonyl halides, R−SO2−X. The best known examples are sulfinyl chlorides, thermolabile, moisture-sensitive compounds, which are useful intermediates for preparation of other sufinyl derivatives such as sulfinamides, sulfinates, sulfoxides, and thiosulfinates. Unlike the sulfur atom in sulfonyl halides and sulfenyl halides, the sulfur atom in sulfinyl halides is chiral, as shown for methanesulfinyl chloride.

Sulfonamide Class of chemical compounds

In chemistry, the sulfonamide functional group (also spelled sulphonamide) is -S(=O)2-NH2, a sulfonyl group connected to an amine group. Relatively speaking this group is unreactive. The amine center is no longer basic. The S-N bond is cleaved only with difficulty. Because of the rigidity of the functional group, sulfonamides are typically crystalline. For this reason, the formation of a sulfonamide is a classic method to convert an amine into a crystalline derivative which can be identified by its melting point. Many important drugs contain the sulfonamide group.

References

  1. 1 2 De Filippo, D.; Momicchioli, F. (1969). "A study of benzenesulfinic and seleninic acids". Tetrahedron. 25 (23): 5733. doi:10.1016/S0040-4020(01)83080-5.
  2. 1 2 3 4 S. Patai (1990). The Chemistry of Sulphinic Acids, Esters and Their Derivatives. New York: J. Wiley and Sons. ISBN   0-471-91918-7.
  3. 1 2 a) A. T. Fuller, I. M. Tonkin and J. Walker, J. Chem. Soc., 1945, 636; b) S. Smiles and C. M. Bere, "Organic Syntheses," Coll. Vol. I, ed. by A. H. Blatt, John Wiley and Sons, Inc., New York, 1948, p. 7; c) E. Bader and H. D. Hermann, Chem. Ber., 88, 46 (1955); d) M. Kulka, Can. J. Chem., 32, 601 (1954).
  4. 1 2 R. J. Cremlyn (1996). An Introduction to Organosulfur Chemistry. New York: J. Wiley and Sons. ISBN   0-471-95512-4.
  5. E. P. Serjeant, B. Dempsey. "Ionization Constants of Organic Acids in Solution" IUPAC Data, Series No. 23 (Pergamon Press, Oxford)
  6. B. Zwanenburg; A.J. H. Klunder (1987). Perspectives in the Organic Chemistry of Sulfur. New York: Elsevier. ISBN   0-444-42739-2.
  7. Chiang, Yunn Hui; Luloff, Jerome S.; Schipper, Edgar (1969). "Aminolyses of sulfinic acid derivatives". The Journal of Organic Chemistry. 34 (8): 2397. doi:10.1021/jo01260a031.