Potentiometric titration

Last updated
Measurements, first and second derivative in a potentiometric titration. Potentiometrics meas 1st 2nd deriv-with-legend.JPG
Measurements, first and second derivative in a potentiometric titration.

In analytical chemistry, potentiometric titration is a technique similar to direct titration of a redox reaction. It is a useful means of characterizing an acid. No indicator is used; instead the electric potential is measured across the analyte, typically an electrolyte solution. To do this, two electrodes are used, an indicator electrode (the glass electrode and metal ion indicator electrode) and a reference electrode. Reference electrodes generally used are hydrogen electrodes, calomel electrodes, and silver chloride electrodes. The indicator electrode forms an electrochemical half-cell with the interested ions in the test solution. The reference electrode forms the other half-cell.

Contents

The overall electric potential is calculated as

Esol is the potential drop over the test solution between the two electrodes. Ecell is recorded at intervals as the titrant is added. A graph of potential against volume added can be drawn and the end point of the reaction is halfway between the jump in voltage. Ecell depends on the concentration of the interested ions with which the indicator electrode is in contact. For example, the electrode reaction may be

As the concentration of Mn+ changes, the Ecell changes correspondingly. Thus the potentiometric titration involve measurement of Ecell with the addition of titrant. Types of potentiometric titration include acid–base titration (total alkalinity and total acidity), redox titration (HI/HY and cerate), precipitation titration (halides), and complexometric titration (free EDTA and Antical #5).

History

The first potentiometric titration was carried out in 1893 by Robert Behrend at Ostwald's Institute in Leipzig. He titrated mercurous solution with potassium chloride, potassium bromide, and potassium iodide. He used a mercury electrode along with a mercury/mercurous nitrate reference electrode. He found that in a cell composed of mercurous nitrate and mercurous nitrate/mercury, the initial voltage is 0. If potassium chloride is added to mercurous nitrate on one side, mercury (I) chloride is precipitated. This decreased the osmotic pressure of mercury (I) ions on the side and creates a potential difference. This potential difference increases slowly as additional potassium chloride is added, but then increases more rapidly. He found the greatest potential difference is achieved once all of the mercurous nitrate has been precipitated. This was used to discern end points of titrations. [1]

Wilhelm Böttger then developed the tool of potentiometric titration while working at Ostwald's Institute. [2] He used potentiometric titration to observe the differences in titration between strong and weak acids, as well as the behavior of polybasic acids. He introduced the idea of using potentiometric titrations for acids and bases that could not be titrated in conjunction with a colorimetric indicator [1]

Potentiometric titrations were first used for redox titrations by Crotogino. He titrated halide ions with potassium permanganate using a shiny platinum electrode and a calomel electrode. He said that if an oxidizing agent is added to a reducing solution then the equilibrium between the reducing substance and reaction product will shift towards the reaction product. This changes the potential very slowly until the amount of reducing substance becomes very small. A large change in potential will occur then once a small addition of the titrating solution is added, as the final amounts of reducing agent are removed and the potential corresponds solely to the oxidizing agent. This large increase in potential difference signifies the endpoint of the reaction. [1]

See also

Related Research Articles

<span class="mw-page-title-main">Titration</span> Laboratory method for determining the concentration of an analyte

Titration is a common laboratory method of quantitative chemical analysis to determine the concentration of an identified analyte. A reagent, termed the titrant or titrator, is prepared as a standard solution of known concentration and volume. The titrant reacts with a solution of analyte to determine the analyte's concentration. The volume of titrant that reacted with the analyte is termed the titration volume.

pH meter Instrument that indicates acidity or alkalinity in water-based solutions, expressed as pH

A pH meter is a scientific instrument that measures the hydrogen-ion activity in water-based solutions, indicating its acidity or alkalinity expressed as pH. The pH meter measures the difference in electrical potential between a pH electrode and a reference electrode, and so the pH meter is sometimes referred to as a "potentiometric pH meter". The difference in electrical potential relates to the acidity or pH of the solution. Testing of pH via pH meters (pH-metry) is used in many applications ranging from laboratory experimentation to quality control.

A redox titration is a type of titration based on a redox reaction between the analyte and titrant. It may involve the use of a redox indicator and/or a potentiometer. A common example of a redox titration is treating a solution of iodine with a reducing agent to produce iodide using a starch indicator to help detect the endpoint. Iodine (I2) can be reduced to iodide (I) by, say, thiosulfate (S2O2−3, and when all iodine is spent the blue colour disappears. This is called an iodometric titration.

<span class="mw-page-title-main">Acid–base titration</span> Method of chemical quantitative analysis

An acid–base titration is a method of quantitative analysis for determining the concentration of an acid or base by neutralizing it using a standard solution of base or acid of known concentration. A pH indicator is used to monitor the progress of the acid–base reaction. If the acid dissociation constant (pKa) of the acid or base dissociation constant (pKb) of base in the analyte solution is known, its solution concentration (molarity) can be determined. Alternately, the pKa can be determined if the analyte solution has a known solution concentration by constructing a titration curve.

In analytical electrochemistry, coulometry determines the amount of matter transformed during an electrolysis reaction by measuring the amount of electricity consumed or produced. It can be used for precision measurements of charge, and the amperes even used to have a coulometric definition. However, today coulometry is mainly used for analytical applications. It is named after Charles-Augustin de Coulomb.

<span class="mw-page-title-main">Mercury(I) chloride</span> Chemical compound

Mercury(I) chloride is the chemical compound with the formula Hg2Cl2. Also known as the mineral calomel (a rare mineral) or mercurous chloride, this dense white or yellowish-white, odorless solid is the principal example of a mercury(I) compound. It is a component of reference electrodes in electrochemistry.

The equivalence point, or stoichiometric point, of a chemical reaction is the point at which chemically equivalent quantities of reactants have been mixed. For an acid-base reaction the equivalence point is where the moles of acid and the moles of base would neutralize each other according to the chemical reaction. This does not necessarily imply a 1:1 molar ratio of acid:base, merely that the ratio is the same as in the chemical reaction. It can be found by means of an indicator, for example phenolphthalein or methyl orange.

Amperometric titration refers to a class of titrations in which the equivalence point is determined through measurement of the electric current produced by the titration reaction. It is a form of quantitative analysis.

A silver chloride electrode is a type of reference electrode, commonly used in electrochemical measurements. For environmental reasons it has widely replaced the saturated calomel electrode. For example, it is usually the internal reference electrode in pH meters and it is often used as reference in reduction potential measurements. As an example of the latter, the silver chloride electrode is the most commonly used reference electrode for testing cathodic protection corrosion control systems in sea water environments.

Iodometry, known as iodometric titration, is a method of volumetric chemical analysis, a redox titration where the appearance or disappearance of elementary iodine indicates the end point.

The Kjeldahl method or Kjeldahl digestion (Danish pronunciation:[ˈkʰelˌtɛˀl]) in analytical chemistry is a method for the quantitative determination of nitrogen contained in organic substances plus the nitrogen contained in the inorganic compounds ammonia and ammonium (NH3/NH4+). Without modification, other forms of inorganic nitrogen, for instance nitrate, are not included in this measurement. Using an empirical relation between Kjeldahl nitrogen content and protein content it is an important method for analyzing proteins. This method was developed by Johan Kjeldahl in 1883.

The total acid number (TAN) is a measurement of acidity that is determined by the amount of potassium hydroxide in milligrams that is needed to neutralize the acids in one gram of oil. It is an important quality measurement of crude oil.

<span class="mw-page-title-main">Ferroin</span> Complex of Fe2+ by ortho-phenantroline

Ferroin is the chemical compound with the formula [Fe(o-phen)3]SO4, where o-phen is an abbreviation for 1,10-phenanthroline, a bidentate ligand. The term "ferroin" is used loosely and includes salts of other anions such as chloride.

<span class="mw-page-title-main">Thermometric titration</span>

A thermometric titration is one of a number of instrumental titration techniques where endpoints can be located accurately and precisely without a subjective interpretation on the part of the analyst as to their location. Enthalpy change is arguably the most fundamental and universal property of chemical reactions, so the observation of temperature change is a natural choice in monitoring their progress. It is not a new technique, with possibly the first recognizable thermometric titration method reported early in the 20th century. In spite of its attractive features, and in spite of the considerable research that has been conducted in the field and a large body of applications that have been developed; it has been until now an under-utilized technique in the critical area of industrial process and quality control. Automated potentiometric titration systems have pre-dominated in this area since the 1970s. With the advent of cheap computers able to handle the powerful thermometric titration software, development has now reached the stage where easy to use automated thermometric titration systems can in many cases offer a superior alternative to potentiometric titrimetry.

Electroanalytical methods are a class of techniques in analytical chemistry which study an analyte by measuring the potential (volts) and/or current (amperes) in an electrochemical cell containing the analyte. These methods can be broken down into several categories depending on which aspects of the cell are controlled and which are measured. The four main categories are potentiometry, amperometry, coulometry, and voltammetry.

In analytical chemistry, argentometry is a type of titration involving the silver(I) ion. Typically, it is used to determine the amount of chloride present in a sample. The sample solution is titrated against a solution of silver nitrate of known concentration. Chloride ions react with silver(I) ions to give the insoluble silver chloride:

Conductometry is a measurement of electrolytic conductivity to monitor a progress of chemical reaction. Conductometry has notable application in analytical chemistry, where conductometric titration is a standard technique. In usual analytical chemistry practice, the term conductometry is used as a synonym of conductometric titration while the term conductimetry is used to describe non-titrative applications. Conductometry is often applied to determine the total conductance of a solution or to analyze the end point of titrations that include ions.

Total Base Number (TBN) is a measurement of basicity that is expressed in terms of the number of milligrams of potassium hydroxide per gram of oil sample. TBN is an important measurement in petroleum products, and the value varies depending on its application. TBN generally ranges from 6–8 mg KOH/g in modern lubricants, 7–10 mg KOH/g for general internal combustion engine use and 10–15 mg KOH/g for diesel engine operations. TBN is typically higher for marine grade lubricants, approximately 15-80 mg KOH/g, as the higher TBN values are designed to increase the operating period under harsh operating conditions, before the lubricant requires replacement.

A chloridometer is a measuring instrument used to determine the concentration of chloride ions (Cl) in a solution. It uses a process known as coulometric titration or amperostatic coulometry, the accepted electrochemistry reference method to determine the concentration of chloride in biological fluids, including blood serum, blood plasma, urine, sweat, and cerebrospinal fluid. The coulometry process generates silver ions, which react with the chloride to form silver chloride (AgCl).

<span class="mw-page-title-main">Calconcarboxylic acid</span> Chemical compound

Calconcarboxylic acid is an azo dye that is used as an indicator for complexometric titrations of calcium with ethylenediaminetetraacetic acid (EDTA) in the presence of magnesium. Structurally, it is similar to eriochrome blue black R, which is obtained from calconcarboxylic acid by decarboxylation and reaction with sodium hydroxide.

References

  1. 1 2 3 Szabadváry, Ferenc. History of Analytical Chemistry: International Series of Monographs in Analytical Chemistry. Elsevier, 2013.
  2. Burns, D. Thorburn, et al. Important Figures of Analytical Chemistry from Germany in Brief Biographies: From the Middle Ages to the Twentieth Century. Springer, 2014.