Prevention through design

Last updated

Prevention through design (PtD), also called safety by design usually in Europe, is the concept of applying methods to minimize occupational hazards early in the design process, with an emphasis on optimizing employee health and safety throughout the life cycle of materials and processes. [1] It is a concept and movement that encourages construction or product designers to "design out" health and safety risks during design development. The process also encourages the various stakeholders within a construction project to be collaborative and share the responsibilities of workers' safety evenly. The concept supports the view that along with quality, programme and cost; safety is determined during the design stage. [2] [3] [4] [5] [6] [7] [8] [ excessive citations ] It increases the cost-effectiveness of enhancements to occupational safety and health. [1]

Contents

Compared to traditional forms of hazard control, PtD possesses a proactive nature whereas other safety measures are reactive to incidences that occur within construction projects. This method for reducing workplace safety risks lessens workers' reliance on personal protective equipment, which is the least effective of the hierarchy of hazard control. [9]

In the domain of process safety, safety by design is usually referred to as inherent safety or inherently safer design (ISD).

Background

Each year in the U.S., 55,000 people die from work-related injuries and diseases, 294,000 are made sick, and 3.8 million are injured. The annual direct and indirect costs have been estimated to range from $128 billion to $155 billion. For U.S. industries such as construction, even though construction personnel account for only 5% of the total U.S. workforce, they are responsible for nearly 20% of all workplace fatalities. [10] Recent studies in Australia indicate that design is a significant contributor to 37% of work-related fatalities; therefore, the successful implementation of prevention through design concepts can have substantial impacts on worker health and safety. [11]

A safer workplace can be created by removing hazards and reducing worker risks to an appropriate level "at the source," or as early in the life cycle of products or workplaces as possible. Designing, redesigning and retrofitting new and current work environments, systems, tools, facilities, equipment, machinery, goods, chemicals, work processes, and work organization. Improving the working climate by incorporating preventive approaches into all designs that have an effect on employees and those on the premises. The strategic plan lays out the objectives for implementing the PtD Plan for the National Initiative successfully.

The National Institute for Occupational Safety and Health (NIOSH) in the United States is a major contributor and promoter of PtD policy and guidelines. NIOSH considers PtD to be "the most effective and reliable type" of prevention of occupational injuries. [12] A core tenet of PtD philosophy the concept of addressing workplace hazards using methods at the top of the Hierarchy of Controls, namely elimination and substitution.

Within Europe, construction designers are legally bound to design out risks during design development to reduce hazards in the construction and end use phases via the Mobile Worksite Directive (also known as CDM regulations in the UK). The concept supports this legal requirement. [13] Some Notified Bodies provide testing and design verification services to ensure compliance with the safety standards defined in regulation codes such as the American Society of Mechanical Engineers. [14] Many non-governmental organizations have been established to support this aim, principally in the UK, Australia and the United States. [15] [16] [17]

History

While engineering, as a rule, factors human safety into the design process, a modern appraisal of specific links to design and workers' safety can be seen in efforts beginning in the 1800s. Trends included the widespread implementation of guards for machinery, controls for elevators, and boiler safety practices. This was followed by enhanced design for ventilation, enclosures, system monitors, lockout/tagout controls, and hearing protectors. More recently, there has been the development of chemical process safety, ergonomically engineered tools, chairs, and workstations, lifting devices, retractable needles, latex-free gloves, and a parade of other safety devices and processes. [18]

In 2007, the US National Institute for Occupational Health and Safety began its National Initiative on Prevention through Design [19] with the goal of promoting prevention through design philosophy, practice, and policy.

Goal

The PtD National Initiative's goal is to avoid or mitigate occupational accidents, diseases, deaths, and exposures by incorporating prevention factors into all designs that impact people in the workplace. This is accomplished by eliminating hazards and reducing worker risks to an acceptable level "at the source," or as early in the life cycle of items or workplaces as possible. Designing, redesigning, and retrofitting new and existing work premises, structures, tools, facilities, equipment, machinery, products, substances, work processes, and work organization.

Integration

Prevention through design represents a shift in approach for on-the-job safety. It involves evaluating potential risks associated with processes, structures, equipment, and tools. It takes into consideration the construction, maintenance, decommissioning, and disposal or recycling of waste material. [18]

The idea of redesigning job tasks and work environments has begun to gain momentum in business and government as a cost-effective means to enhance occupational safety and health. Many U.S. companies openly support PtD concepts and have developed management practices to implement them. Other countries are actively promoting PtD concepts as well. The United Kingdom began requiring construction companies, project owners, and architects to address safety and health during the design phase of projects in 1994. Australia developed the Australian National OHS Strategy 2002–2012, which set "eliminating hazards at the design stage" as one of five national priorities. As a result, the Australian Safety and Compensation Council (ASCC) developed the Safe Design National Strategy and Action Plans for Australia encompassing a wide range of design areas. [9]

In the US

Government

The National Institute for Occupational Safety and Health (NIOSH) is a large contributor to prevention through design efforts in the United States. Several NIOSH initiatives and guidelines directly or indirectly advocate for PtD practices. Through NIOSH efforts, the U.S. Green Building Council posted new PtD credits [20] available for Leadership in Energy and Environmental Design (LEED) certification for construction. Additionally, they provide a wide variety of educational and guidance materials [21] on the topic of PtD The NIOSH "Buy Quiet" initiative uses elements of prevention through design to encourage companies to buy quieter machinery, thereby reducing occupational hearing loss for their workers. [22]

The Prevention through Design (PtD) Initiative of the National Institute for Occupational Safety and Health collaborates with business, labor, trade unions, professional organizations, and academia. The curriculum focuses on “designing out” workplace hazards and threats in order to avoid sickness, injury, and death. Encourage technical accreditation bodies to include PtD in their evaluations to educate and encourage others to use PtD goals and processes in collaborative design and renovation of facilities, work processes, equipment, and resources.[ citation needed ]

Priorities of this initiative include:

On the International Stage

United Kingdom

Within the United Kingdom (U.K.), PtD has been legally required for those in the construction industry since March 31, 1995. [23] At the time of implementation, the fatality rate within the U.K. construction industry was 10 fatalities per 100,000 workers. [24] In 2021, the fatality rate has been reduced to 1.62 fatalities per 100,000 workers. [25] Although it cannot be established that PtD is the sole facilitator of this reduction in construction fatalities, it does show that since its enactment, fatalities have dropped substantially. Since its establishment in 1995, the UK government has periodically updated the legislation with the 2015 version of The Construction (Design and Management) Regulations placing even greater emphasis on the role that principal designers should play in injury and fatality prevention during the design phase of a project. [26]

Australia

In Australia, the Work Health and Safety Act of 2011 was passed which included elements that laid out the legal responsibilities of employers, designers, and other stakeholders within construction projects to take the necessary steps to ensure that safety is prioritized through all phases of the construction process. [27] In practice, what this has looked like is Australian state governments such as Queensland, South Australia, and Western Australia mandating design professionals to create a strategy for safety considerations throughout the construction process. The plan has to include pre-construction considerations, how safety can be evaluated, and providing details of how safety will be controlled once the physical construction process begins. Even before the Work Health and Safety Act of 2011, since 1998, any construction project that was valued over AU$3 million was subject to this requirement.

Singapore

In Singapore, the government's Workplace Safety and Health Council pioneered a Design for Safety (Dfs) mark which would allow the Singaporean government to recognize construction projects that were completed with safety in mind. Receiving the Dfs mark for safety considerations is analogous to a building receiving a LEED certification for featuring aspects of sustainability and carbon footprint reduction. [28]

Barriers to PtD Implementation

Education

Even though PtD is not a new concept and has shown to be associated with reductions in injuries and fatalities across various construction industries on the international stage, it is still not a core feature of various engineering and architectural schools' curriculum. [29] This can compromise designers' ability to consider safety in real-world applications since they have had limited education on the concept of safety let alone PtD.

See also

Related Research Articles

<span class="mw-page-title-main">Personal protective equipment</span> Equipment designed to help protect an individual from hazards

Personal protective equipment (PPE) is protective clothing, helmets, goggles, or other garments or equipment designed to protect the wearer's body from injury or infection. The hazards addressed by protective equipment include physical, electrical, heat, chemicals, biohazards, and airborne particulate matter. Protective equipment may be worn for job-related occupational safety and health purposes, as well as for sports and other recreational activities. Protective clothing is applied to traditional categories of clothing, and protective gear applies to items such as pads, guards, shields, or masks, and others. PPE suits can be similar in appearance to a cleanroom suit.

<span class="mw-page-title-main">National Institute for Occupational Safety and Health</span> US federal government agency for work-related health and safety

The National Institute for Occupational Safety and Health is the United States federal agency responsible for conducting research and making recommendations for the prevention of work-related injury and illness. NIOSH is part of the Centers for Disease Control and Prevention (CDC) within the U.S. Department of Health and Human Services. Despite its name, it is not part of either the National Institutes of Health nor OSHA. Its current director is John Howard.

Occupational noise is the amount of acoustic energy received by an employee's auditory system when they are working in the industry. Occupational noise, or industrial noise, is often a term used in occupational safety and health, as sustained exposure can cause permanent hearing damage. Occupational noise is considered an occupational hazard traditionally linked to loud industries such as ship-building, mining, railroad work, welding, and construction, but can be present in any workplace where hazardous noise is present.

Construction site safety is an aspect of construction-related activities concerned with protecting construction site workers and others from death, injury, disease or other health-related risks. Construction is an often hazardous, predominantly land-based activity where site workers may be exposed to various risks, some of which remain unrecognized. Site risks can include working at height, moving machinery and materials, power tools and electrical equipment, hazardous substances, plus the effects of excessive noise, dust and vibration. The leading causes of construction site fatalities are falls, electrocutions, crush injuries, and caught-between injuries.

<span class="mw-page-title-main">Occupational hygiene</span> Management of workplace health hazards

Occupational hygiene is the anticipation, recognition, evaluation, control, and confirmation (ARECC) of protection from risks associated with exposures to hazards in, or arising from, the workplace that may result in injury, illness, impairment, or affect the well-being of workers and members of the community. These hazards or stressors are typically divided into the categories biological, chemical, physical, ergonomic and psychosocial. The risk of a health effect from a given stressor is a function of the hazard multiplied by the exposure to the individual or group. For chemicals, the hazard can be understood by the dose response profile most often based on toxicological studies or models. Occupational hygienists work closely with toxicologists for understanding chemical hazards, physicists for physical hazards, and physicians and microbiologists for biological hazards. Environmental and occupational hygienists are considered experts in exposure science and exposure risk management. Depending on an individual's type of job, a hygienist will apply their exposure science expertise for the protection of workers, consumers and/or communities.

<span class="mw-page-title-main">Occupational hazard</span> Hazard experienced in the workplace

An occupational hazard is a hazard experienced in the workplace. This encompasses many types of hazards, including chemical hazards, biological hazards (biohazards), psychosocial hazards, and physical hazards. In the United States, the National Institute for Occupational Safety and Health (NIOSH) conduct workplace investigations and research addressing workplace health and safety hazards resulting in guidelines. The Occupational Safety and Health Administration (OSHA) establishes enforceable standards to prevent workplace injuries and illnesses. In the EU, a similar role is taken by EU-OSHA.

<span class="mw-page-title-main">Young worker safety and health</span>

Around the world, nearly 250 million children, about one in every six children, ages 5 through 17, are involved in child labor. Children can be found in almost any economic sector. However, at a global level, most of them work in agriculture (70%). Approximately 2.4 million adolescents aged 16 to 17 years worked in the U.S. in 2006. Official employment statistics are not available for younger adolescents who are also known to work, especially in agricultural settings.

Workplace health surveillance or occupational health surveillance (U.S.) is the ongoing systematic collection, analysis, and dissemination of exposure and health data on groups of workers. The Joint ILO/WHO Committee on Occupational Health at its 12th Session in 1995 defined an occupational health surveillance system as "a system which includes a functional capacity for data collection, analysis and dissemination linked to occupational health programmes".

The National Occupational Research Agenda (NORA) is a partnership program developed by the National Institute for Occupational Safety and Health (NIOSH). The program was founded in 1996 to provide a framework for research collaborations among universities, large and small businesses, professional societies, government agencies, and worker organizations. Together these parties identify issues in the field of workplace safety and health that require immediate attention based on the number of workers affected, the seriousness of the hazard, and the likelihood that new safety information and approaches can effect a change.

An occupational fatality is a death that occurs while a person is at work or performing work related tasks. Occupational fatalities are also commonly called "occupational deaths" or "work-related deaths/fatalities" and can occur in any industry or occupation.

<span class="mw-page-title-main">Physical hazard</span> Hazard due to a physical agent

A physical hazard is an agent, factor or circumstance that can cause harm with contact. They can be classified as type of occupational hazard or environmental hazard. Physical hazards include ergonomic hazards, radiation, heat and cold stress, vibration hazards, and noise hazards. Engineering controls are often used to mitigate physical hazards.

<span class="mw-page-title-main">Fall protection</span> Controls for workplace fall hazards

Fall protection is the use of controls designed to protect personnel from falling or in the event they do fall, to stop them without causing severe injury. Typically, fall protection is implemented when working at height, but may be relevant when working near any edge, such as near a pit or hole, or performing work on a steep surface. Many of these incidents are preventable when proper precautions are taken, making fall protection training not only critical, but also required for all construction workers. Fall Protection for Construction identifies common hazards and explains important safety practices to help ensure every team member is prepared to recognize fall hazards on the job and understand how to keep themselves and others safe.

<span class="mw-page-title-main">Buy Quiet</span>

Buy Quiet is an American health and safety initiative to select and purchase the lowest noise emitting power tools and machinery in order to reduce occupational and community noise exposure. Buy Quiet Programs are examples of noise control strategies. Buy Quiet is part of the larger Hearing Loss Prevention Program, and is an example of Prevention Through Design, which seeks to reduce occupational injury through prevention considerations in designs that impact workers.

<span class="mw-page-title-main">Occupational safety and health</span> Field concerned with the safety, health and welfare of people at work

Occupational safety and health (OSH) or occupational health and safety (OHS), also known simply as occupational health or occupational safety, is a multidisciplinary field concerned with the safety, health, and welfare of people at work. These terms also refer to the goals of this field, so their use in the sense of this article was originally an abbreviation of occupational safety and health program/department etc. OSH is related to the fields of occupational medicine and occupational hygiene.

<span class="mw-page-title-main">Hierarchy of hazard controls</span> System used in industry to eliminate or minimize exposure to hazards

Hierarchy of hazard control is a system used in industry to prioritize possible interventions to minimize or eliminate exposure to hazards. It is a widely accepted system promoted by numerous safety organizations. This concept is taught to managers in industry, to be promoted as standard practice in the workplace. It has also been used to inform public policy, in fields such as road safety. Various illustrations are used to depict this system, most commonly a triangle.

Total Worker Health is a trademarked strategy defined as policies, programs, and practices that integrate protection from work-related safety and health hazards with promotion of injury and illness prevention efforts to advance worker well-being. It was conceived and is funded by the National Institute for Occupational Safety and Health (NIOSH). Total Worker Health is tested and developed in six Centers of Excellence for Total Worker Health in the United States.

<span class="mw-page-title-main">Safe-in-Sound Award</span>

The Safe-in-Sound Excellence in Hearing Loss Prevention Award is an occupational health and safety award that was established in 2007 through a partnership between the National Institute for Occupational Safety and Health (NIOSH) and the National Hearing Conservation Association (NHCA). In 2018, the partnership was extended to include the Council for Accreditation in Occupational Hearing Conservation (CAOHC).

<span class="mw-page-title-main">Occupational hearing loss</span> Form of hearing loss

Occupational hearing loss (OHL) is hearing loss that occurs as a result of occupational hazards, such as excessive noise and ototoxic chemicals. Noise is a common workplace hazard, and recognized as the risk factor for noise-induced hearing loss and tinnitus but it is not the only risk factor that can result in a work-related hearing loss. Also, noise-induced hearing loss can result from exposures that are not restricted to the occupational setting.

Engineering controls are strategies designed to protect workers from hazardous conditions by placing a barrier between the worker and the hazard or by removing a hazardous substance through air ventilation. Engineering controls involve a physical change to the workplace itself, rather than relying on workers' behavior or requiring workers to wear protective clothing.

<span class="mw-page-title-main">Occupational hazards of solar panel installation</span>

The introduction and rapid expansion of solar technology has brought with it a number of occupational hazards for workers responsible for panel installation. Guidelines for safe solar panel installation exist, however the injuries related to panel installation are poorly quantified.

References

  1. 1 2 "General Safe Practices for Working with Engineered Nanomaterials in Research Laboratories". U.S. National Institute for Occupational Safety and Health. May 2012. doi: 10.26616/NIOSHPUB2012147 . Retrieved 2017-03-05.
  2. Behm M, 2005, Linking Construction Fatalities to the Design for Construction Safety Concept, Safety Science, Number 43, Pages 589-611
  3. Churcher D W, Alwani-Starr G M,Incorporating construction health and safety into the design process”, Implementation of Health and Safety in Construction Sites, Alvels, Dias & Coble (eds), ISBN   90-5410-847-9, 1996
  4. ECI 2000 Designing for Safety and Health, Proceedings of the ECI/CIB/HSE international Conference, London, European Construction Institute, Loughborough, ed A G F Gibb, June 245pp ECI, Publications
  5. Gambatese JA, Hinze J and Haas C, Tool to Design for Construction Worker Safety, Journal of Architectural Engineering, Volume 3, Part 1, Pages 32-42, 1997
  6. Gambatese JA, 2003, Safety in design: A Proactive Approach to Construction Worker Safety and Health, Applied Occupational and Environmental Hygiene, Vol 18 (5): pp 339-342
  7. Gambatese JA, Hinze J, Addressing Construction Worker Safety in the Design Phase – Designing for worker Safety, Automation in Construction, Volume 8, Issue 6, Pages 643-649, August 1999
  8. Hecker S, Gambatese J, Weinstein M, Designing for Worker Safety- Moving the Construction Safety Process Upstream, Professional Safety, Pages 32-44, September 2005
  9. 1 2 National Institute for Occupational Safety and Health. Prevention through Design. Accessed 9/24/08.
  10. U.S. Bureau of Labor Statistics (December 16, 2022). "National Census of Fatal Occupational Injuries 2021" (PDF). U.S. Bureau of Labor Statistics. Retrieved May 10, 2023.
  11. Heidel, Donna S., Paul Schulte. Making the Business Case for Prevention through Design. NIOSH Science Blog, 6/2/08. Accessed 9/23/08.
  12. "CDC - NIOSH Publications and Products - Supporting Prevention through Design (PtD) Using Business Value Concepts (2015-198)". www.cdc.gov. 2015. doi: 10.26616/NIOSHPUB2015198 . Retrieved 2017-02-01.
  13. "Construction Design and Management Regulations 2015". www.hse.gov.uk. Retrieved 2017-04-19.
  14. "Pressure Vessel Inspection According to ASME". TÜV Rheinland (in German). Retrieved 2017-04-19.
  15. "Expired Registration Recovery Policy". www.saferdesign.org. Archived from the original on 2013-04-15. Retrieved 2017-04-19.
  16. "Safe Work Australia". Safe Work Australia. Archived from the original on 2009-12-14. Retrieved 2017-04-19.
  17. "Executive and Continuing Professional Education". Harvard University School of Public Health. Archived from the original on 2010-08-16. Retrieved 2017-04-19.
  18. 1 2 Schulte, Paul A., Richard Rinehart, Andrea Okun, Charles L. Geraci, Donna S. Heidel. National Prevention through Design (PtD) Initiative, Journal of Safety Research, Volume 39, Issue 2. Prevention through Design, 2008, Pages 115-121.
  19. "CDC - NIOSH Publications and Products - The State of the National Initiative on Prevention through Design (2014-123)". www.CDC.gov. 2014. doi: 10.26616/NIOSHPUB2014123 . Retrieved 18 November 2017.
  20. "CDC - Prevention Through Design: Green , Safe, and Healthy Jobs - NIOSH Workplace Safety and Health Topic". www.CDC.gov. Retrieved 18 November 2017.
  21. "CDC - Prevention through Design - NIOSH Workplace Safety and Health Topic". www.CDC.gov. Retrieved 18 November 2017.
  22. "CDC - Buy Quiet - NIOSH Workplace Safety and Health Topics". www.CDC.gov. Retrieved 18 November 2017.
  23. U.K. Government's Health and Safety Executive (March 31, 1995). "The Construction (Design and Management) Regulations 1994". U.K. Legislation. Retrieved May 10, 2023.
  24. U.K. Government's Health and Safety Executives (December 14, 2004). "Health and Safety Executive: Improving health and safety in the construction industry" (PDF). United Kingdom Parliament. Retrieved May 10, 2023.
  25. UK Government's Health and Safety Executives (November 23, 2022). "Construction statistics in Great Britain, 2022" (PDF). Health and Safety Executive. Retrieved May 10, 2023.
  26. "Construction - Construction Design and Management Regulations 2015". www.hse.gov.uk. Retrieved 2023-05-10.
  27. AG. "Work Health and Safety Act 2011". www.legislation.gov.au. Retrieved 2023-05-10.
  28. Toole, T. Michael; Gambatese, John (January 2008). "The Trajectories of Prevention through Design in Construction". Journal of Safety Research. 39 (2): 225–230. doi:10.1016/j.jsr.2008.02.026. ISSN   0022-4375. PMID   18454974.
  29. López-Arquillos, A.; Rubio-Romero, J. C.; Martinez-Aires, M. D. (2015-03-01). "Prevention through Design (PtD). The importance of the concept in Engineering and Architecture university courses". Safety Science. 73: 8–14. doi:10.1016/j.ssci.2014.11.006. ISSN   0925-7535.

Sources

Further reading