Probabilistic argumentation

Last updated

Probabilistic argumentation refers to different formal frameworks pertaining to probabilistic logic. All share the idea that qualitative aspects can be captured by an underlying logic, while quantitative aspects of uncertainty can be accounted for by probabilistic measures.

Contents

Probabilistic argumentation labellings

The framework of "probabilistic labellings" refers to probability spaces where the sample space is a set of labellings of argumentation graphs ( Riveret et al. 2018 ). A labelling of an argumentation graph associates any argument of the graph with a label to reflect the acceptability of the argument within the graph. For example, an argument can be associated with a label "in" (the argument is accepted), "out" (the argument is rejected), or "und" (the status of the argument is undecided — neither accepted nor rejected). Consequently, the approach of probabilistic labellings associates any argument with the probability of a label to reflect the probability of the argument to be labelled as such.

Probabilistic argumentation systems

The name "probabilistic argumentation" has been used to refer to a particular theory of reasoning that encompasses uncertainty and ignorance, combining probability theory and deductive logic ( Haenni, Kohlas & Lehmann 2000 ). OpenPAS is an open-source implementation of such a probabilistic argumentation system.

Probabilistic argumentation systems encounter a problem when used to determine the occurrence of Black Swan events since, by definition, those events are so improbable as to seem impossible. As such, probabilistic arguments should be considered fallacious arguments known as appeals to probability.

Related Research Articles

Deductive reasoning is the mental process of drawing deductive inferences. An inference is deductively valid if its conclusion follows logically from its premises, i.e. it is impossible for the premises to be true and the conclusion to be false.

<span class="mw-page-title-main">Dempster–Shafer theory</span> Mathematical framework to model epistemic uncertainty

The theory of belief functions, also referred to as evidence theory or Dempster–Shafer theory (DST), is a general framework for reasoning with uncertainty, with understood connections to other frameworks such as probability, possibility and imprecise probability theories. First introduced by Arthur P. Dempster in the context of statistical inference, the theory was later developed by Glenn Shafer into a general framework for modeling epistemic uncertainty—a mathematical theory of evidence. The theory allows one to combine evidence from different sources and arrive at a degree of belief that takes into account all the available evidence.

Inferences are steps in reasoning, moving from premises to logical consequences; etymologically, the word infer means to "carry forward". Inference is theoretically traditionally divided into deduction and induction, a distinction that in Europe dates at least to Aristotle. Deduction is inference deriving logical conclusions from premises known or assumed to be true, with the laws of valid inference being studied in logic. Induction is inference from particular evidence to a universal conclusion. A third type of inference is sometimes distinguished, notably by Charles Sanders Peirce, contradistinguishing abduction from induction.

<span class="mw-page-title-main">Logical reasoning</span> Process of drawing correct inferences

Logical reasoning is a mental activity that aims to arrive at a conclusion in a rigorous way. It happens in the form of inferences or arguments by starting from a set of premises and reasoning to a conclusion supported by these premises. The premises and the conclusion are propositions, i.e. true or false claims about what is the case. Together, they form an argument. Logical reasoning is norm-governed in the sense that it aims to formulate correct arguments that any rational person would find convincing. The main discipline studying logical reasoning is logic.

In philosophy of logic, defeasible reasoning is a kind of provisional reasoning that is rationally compelling, though not deductively valid. It usually occurs when a rule is given, but there may be specific exceptions to the rule, or subclasses that are subject to a different rule. Defeasibility is found in literatures that are concerned with argument and the process of argument, or heuristic reasoning.

Formal epistemology uses formal methods from decision theory, logic, probability theory and computability theory to model and reason about issues of epistemological interest. Work in this area spans several academic fields, including philosophy, computer science, economics, and statistics. The focus of formal epistemology has tended to differ somewhat from that of traditional epistemology, with topics like uncertainty, induction, and belief revision garnering more attention than the analysis of knowledge, skepticism, and issues with justification.

Probabilistic logic involves the use of probability and logic to deal with uncertain situations. Probabilistic logic extends traditional logic truth tables with probabilistic expressions. A difficulty of probabilistic logics is their tendency to multiply the computational complexities of their probabilistic and logical components. Other difficulties include the possibility of counter-intuitive results, such as in case of belief fusion in Dempster–Shafer theory. Source trust and epistemic uncertainty about the probabilities they provide, such as defined in subjective logic, are additional elements to consider. The need to deal with a broad variety of contexts and issues has led to many different proposals.

Evidential reason or evidential reasoning may refer to:

The term "information algebra" refers to mathematical techniques of information processing. Classical information theory goes back to Claude Shannon. It is a theory of information transmission, looking at communication and storage. However, it has not been considered so far that information comes from different sources and that it is therefore usually combined. It has furthermore been neglected in classical information theory that one wants to extract those parts out of a piece of information that are relevant to specific questions.

Subjective logic is a type of probabilistic logic that explicitly takes epistemic uncertainty and source trust into account. In general, subjective logic is suitable for modeling and analysing situations involving uncertainty and relatively unreliable sources. For example, it can be used for modeling and analysing trust networks and Bayesian networks.

An argument is a series of sentences, statements, or propositions some of which are called premises and one is the conclusion. The purpose of an argument is to give reasons for one's conclusion via justification, explanation, and/or persuasion.

Statistical relational learning (SRL) is a subdiscipline of artificial intelligence and machine learning that is concerned with domain models that exhibit both uncertainty and complex, relational structure. Typically, the knowledge representation formalisms developed in SRL use first-order logic to describe relational properties of a domain in a general manner and draw upon probabilistic graphical models to model the uncertainty; some also build upon the methods of inductive logic programming. Significant contributions to the field have been made since the late 1990s.

A probabilistic logic network (PLN) is a conceptual, mathematical and computational approach to uncertain inference; inspired by logic programming, but using probabilities in place of crisp (true/false) truth values, and fractional uncertainty in place of crisp known/unknown values. In order to carry out effective reasoning in real-world circumstances, artificial intelligence software must robustly handle uncertainty. However, previous approaches to uncertain inference do not have the breadth of scope required to provide an integrated treatment of the disparate forms of cognitively critical uncertainty as they manifest themselves within the various forms of pragmatic inference. Going beyond prior probabilistic approaches to uncertain inference, PLN is able to encompass within uncertain logic such ideas as induction, abduction, analogy, fuzziness and speculation, and reasoning about time and causality.

John L. Pollock (1940–2009) was an American philosopher known for influential work in epistemology, philosophical logic, cognitive science, and artificial intelligence.

Probabilistic programming (PP) is a programming paradigm in which probabilistic models are specified and inference for these models is performed automatically. It represents an attempt to unify probabilistic modeling and traditional general purpose programming in order to make the former easier and more widely applicable. It can be used to create systems that help make decisions in the face of uncertainty.

In artificial intelligence and related fields, an argumentation framework is a way to deal with contentious information and draw conclusions from it using formalized arguments.

Formal scientists have attempted to combine formal logic and dialectic through formalisation of dialectic. These attempts include pre-formal and partially formal treatises on argument and dialectic, systems based on defeasible reasoning, and systems based on game semantics and dialogical logic.

Rulelog is an expressive semantic rule-based knowledge representation and reasoning (KRR) language. It underlies knowledge representation languages used in systems such as Flora-2, SILK and others. It extends well-founded declarative logic programs with features for higher-order syntax, frame syntax, defeasibility, general quantified expressions both in the bodies of the rules and their heads, user-defined functions, and restraint bounded rationality.

In argumentation theory, an argumentation scheme or argument scheme is a template that represents a common type of argument used in ordinary conversation. Many different argumentation schemes have been identified. Each one has a name and presents a type of connection between premises and a conclusion in an argument, and this connection is expressed as a rule of inference. Argumentation schemes can include inferences based on different types of reasoning—deductive, inductive, abductive, probabilistic, etc.

References