Progressive lens

Last updated
View through a progressive lens at some distance. In normal use, a much smaller section of the lens is used, so that the distortion is much smaller. 20100105 MultifocalGlass.jpg
View through a progressive lens at some distance. In normal use, a much smaller section of the lens is used, so that the distortion is much smaller.

Progressive lenses are corrective lenses used in eyeglasses to correct presbyopia and other disorders of accommodation. They are characterised by a gradient of increasing lens power, added to the wearer's correction for the other refractive errors. The gradient starts at the wearer's distance prescription at the top of the lens and reaches a maximum addition power, or the full reading addition, at the bottom of the lens. The length of the progressive power gradient on the lens surface depends on the design of the lens, with a final addition power between 0.75 and 3.50 dioptres. The addition value prescribed depends on the level of presbyopia of the patient. In general the older the patient, the higher the addition. They are also known as multifocal lenses, progressive addition lenses (PAL), varifocal lenses, progressive power lenses, graduated prescription lenses, or progressive spectacle lenses.

Contents

History

The first patent for a PAL was British Patent 15,735, granted to Owen Aves with a 1907 priority date. This patent included the manufacturing process and design which was however never commercialized. Unlike modern PALs, it consisted of a conical back surface and a cylindrical front with opposing axis in order to create a power progression. [1]

While there were several intermediate steps (H. Newbold appears to have designed a similar lens to Aves around 1913), there is evidence [2] to suggest that Duke Elder in 1922 developed the world's first commercially available PAL (Ultrifo) sold by "Gowlland of Montreal". This was based on an arrangement of aspherical surfaces.

The Carl Zeiss AG & Varilux lenses were the first PAL of modern design. Bernard Maitenaz, patented Varilux in 1953, and the product was introduced in 1959 by Société des Lunetiers (now Essilor). The first Varilux lenses' surface structure was however still close to a bifocal lens, with an upper, aberration-free half of the surface for far vision and a rather large "segment" for clear near vision. The breakthrough in user adaptation and comfort, as well as peripheral and dynamic vision however occurred in 1972 with the introduction of Varilux 2, for which Maitenaz created a totally aspheric design and manufacturing process. [3] Carl Zeiss AG developed freeform technology in 1983 with its own patented progressive series Gradal HS. [4]

Early progressive lenses were relatively crude designs. Right and left were identical variable power lenses with distance and reading power centers in the upper and lower part of the lens, respectively. The glazing was made to accommodate eye position changes from distance viewing to reading. The point of reading is about 14 mm below and 2 mm to the nasal side in comparison to distance viewing. By tilting the reading power towards the nasal side in perfect symmetry, appropriate reading power was given to the wearer.

The symmetric design, however, was difficult to accept for patients, because the eyes in general work asymmetrically. When you look to your right, your right eye views distal (i.e. looking through the lens near to the arm of the spectacles) while your left eye views nasal (i.e. looking through the lens near to the bridge). Modern sophisticated progressive lenses are designed asymmetrically for greater patient acceptance and include special designs to cater to many separate types of wearer application: for example progressive addition lenses may be designed with distance to intermediate or intermediate to near prescriptions specifically for use as an occupational lens, or to offer enlarged near and intermediate view areas.

The typical progressive lens is produced from a so-called semi-finished lens. The semi-finished lens is molded with an asymmetrical power pattern on the front. On the back side a custom surfacing is made to adjust the power for each patient. This method is however problematic, especially for astigmatic prescriptions. The reason being that the semi-finished front pattern is designed for a spherical prescription. Freeform designs are tailored to each prescription and do not have this problem. [5]

Since the 1980s, manufacturers have been able to minimize unwanted aberrations by:

Today the complex surfaces of a progressive lens can be cut and polished on computer-controlled machines, allowing 'freeform surfacing', as opposed to the earlier casting process, thus explaining the difference in price. In short, the price is based on the technology used and the year the lens came to market.

Advantages and use

Disadvantages

Peripheral Distortion: Progressive lenses suffer regions of aberrations and geometric distortions in the periphery, leading to poor vision when turning the eyes down and to the sides. Different designs of progressive lenses have more or less of this distortion.

Fitting: Progressive lenses require careful placement relative to the wearer's pupil centre for a distance-viewing reference position. Incorrect specification of the fitting location can cause problems for the wearer including (depending on the design of the lens) narrow fields of view, clear vision in one eye only, on-axis blur, and the need to alter the natural head position in order to see clearly.

Cost: Progressive lenses are more expensive than bifocal and single-vision lenses due to higher manufacturing and fitting costs. Some research has been conducted to reduce the fabrication cost by precision injection molding. [6]

When recommending a progressive lens design, an eyecare practitioner will usually ask the customer some questions about their lifestyle, which coupled with prescription restrictions or recommendations and cost can establish the suitability of various models of progressive lens. Different lenses have different glazing restrictions, lens material availabilities, maximum and minimum fitting heights, prescription ranges and as such the variation in quality between higher and lower end varifocal lenses is considerable. [7]

Adaptation

For those new to progressive lenses, an accommodation period is often required because the brain needs to learn to adapt to them. [1] This period varies from a few hours for some individuals up to around two weeks. [8] During this period, side effects can include headache and dizziness. It is advised that, when these symptoms set in, the progressive lenses be removed for a short period and replaced after symptoms have subsided. Returning to an older prescription or different type of lens design (bifocal, trifocal) only serves to increase the adaptation period to the progressive lenses. Some wearers find the visual discomfort caused by these distortions outweigh the benefits of wearing PALs; this is known as progressive non-tolerance. However, manufacturers claim acceptance rates of 90%–98%.

Depth perception and distance estimation can be influenced during the adaptation period.

Related Research Articles

<span class="mw-page-title-main">Corrective lens</span> Type of lens to improve visual perception

A corrective lens is a transmissive optical device that is worn on the eye to improve visual perception. The most common use is to treat refractive errors: myopia, hypermetropia, astigmatism, and presbyopia. Glasses or "spectacles" are worn on the face a short distance in front of the eye. Contact lenses are worn directly on the surface of the eye. Intraocular lenses are surgically implanted most commonly after cataract removal but can be used for purely refractive purposes.

<span class="mw-page-title-main">Glasses</span> Form of vision aid

Glasses, also known as eyeglasses or spectacles, are vision eyewear with clear or tinted lenses mounted in a frame that holds them in front of a person's eyes, typically utilizing a bridge over the nose and hinged arms, known as temples or temple pieces, that rest over the ears.

<span class="mw-page-title-main">Contact lens</span> Lenses placed on the eyes surface

Contact lenses, or simply contacts, are thin lenses placed directly on the surface of the eyes. Contact lenses are ocular prosthetic devices used by over 150 million people worldwide, and they can be worn to correct vision or for cosmetic or therapeutic reasons. In 2010, the worldwide market for contact lenses was estimated at $6.1 billion, while the US soft lens market was estimated at $2.1 billion. Multiple analysts estimated that the global market for contact lenses would reach $11.7 billion by 2015. As of 2010, the average age of contact lens wearers globally was 31 years old, and two-thirds of wearers were female.

<span class="mw-page-title-main">Bifocals</span> Eyeglass lens with two distinct optical powers invented by Benjamin Franklin

Bifocals are eyeglasses with two distinct optical powers. Bifocals are commonly prescribed to people with presbyopia who also require a correction for myopia, hyperopia, and/or astigmatism.

<span class="mw-page-title-main">Cooke triplet</span> Patented photographic lens system designed by Dennis Taylor

The Cooke triplet is a photographic lens designed and patented in 1893 by Dennis Taylor who was employed as chief engineer by T. Cooke & Sons of York. It was the first lens system that allowed elimination of most of the optical distortion or aberration at the outer edge of the image.

<span class="mw-page-title-main">Tessar</span> Photographic lens design

The Tessar is a photographic lens design conceived by the German physicist Dr. Paul Rudolph in 1902 while he worked at the Zeiss optical company and patented by Zeiss in Germany; the lens type is usually known as the ZeissTessar. Since its introduction, millions of Tessar and Tessar-derived lenses have been manufactured by Zeiss and other manufacturers, and are still produced as excellent intermediate aperture lenses.

<span class="mw-page-title-main">Presbyopia</span> Medical condition associated with aging of the eye

Presbyopia is physiological insufficiency of accommodation associated with the aging of the eye that results in progressively worsening ability to focus clearly on close objects. Also known as age-related farsightedness, it affects many adults over the age of 40. A common sign of presbyopia is difficulty reading small print which results in having to hold reading material farther away. Other symptoms associated can be headaches and eyestrain. Different people will have different degrees of problems. Other types of refractive errors may exist at the same time as presbyopia. This condition is similar to hypermetropia or far-sightedness which starts in childhood and exhibits similar symptoms of blur in the vision for close objects.

<span class="mw-page-title-main">Eyeglass prescription</span> Order written by an eyewear prescriber

An eyeglass prescription is an order written by an eyewear prescriber, such as an optometrist, that specifies the value of all parameters the prescriber has deemed necessary to construct and/or dispense corrective lenses appropriate for a patient. If an eye examination indicates that corrective lenses are appropriate, the prescriber generally provides the patient with an eyewear prescription at the conclusion of the exam.

<span class="mw-page-title-main">Optician</span> Profession that makes or fits eyeglasses

An optician is an individual who fits eyeglasses or contact lenses by filling a refractive prescription from an optometrist or ophthalmologist. They are able to translate and adapt ophthalmic prescriptions, dispense products, and work with accessories. There are several specialties within the field.

<span class="mw-page-title-main">Intraocular lens</span> Lens implanted in the eye to treat cataracts or myopia

An Intraocular lens (IOL) is a lens implanted in the eye usually as part of a treatment for cataracts or for correcting other vision problems such as short sightedness and long sightedness, a form of refractive surgery. If the natural lens is left in the eye, the IOL is known as phakic, otherwise it is a pseudophakic lens. Both kinds of IOLs are designed to provide the same light-focusing function as the natural crystalline lens. This can be an alternative to LASIK, but LASIK is not an alternative to an IOL for treatment of cataracts.

Trifocals are eyeglasses with lenses that have three regions which correct for distance, intermediate, and near vision. John Isaac Hawkins developed the trifocal lens in 1827.

<span class="mw-page-title-main">Refractive error</span> Problem with focusing light accurately on the retina due to the shape of the eye

Refractive error is a problem with focusing light accurately on the retina due to the shape of the eye and/or cornea. The most common types of refractive error are near-sightedness, far-sightedness, astigmatism, and presbyopia. Near-sightedness results in far away objects being blurry, far-sightedness and presbyopia result in close objects being blurry, and astigmatism causes objects to appear stretched out or blurry. Other symptoms may include double vision, headaches, and eye strain.

<span class="mw-page-title-main">Aspheric lens</span> Type of lens

An aspheric lens or asphere is a lens whose surface profiles are not portions of a sphere or cylinder. In photography, a lens assembly that includes an aspheric element is often called an aspherical lens.

Heinrich Erfle was a German optician who spent most of his career at Carl Zeiss. In 1917 he invented the first wide-field eyepieces for telescopes and binoculars. During his short life he developed a number of new designs for telescopes and eyepieces. Erfle died at the age of 39 from an infection caused after he "accidentally stabbed himself in the leg with a fountain pen and did not pay attention to the wound." After Erfle's death, his patent applications were filed by Rudolph Straubel for the benefit of Erfle's family.

<span class="mw-page-title-main">Anastigmat</span> Lens design

An anastigmat or anastigmatic lens is a photographic lens completely corrected for the three main optical aberrations: spherical aberration, coma, and astigmatism. Early lenses often included the word Anastigmat in their name to advertise this new feature.

Adjustable focus eyeglasses are eyeglasses with an adjustable focal length. They compensate for refractive errors by providing variable focusing, allowing users to adjust them for desired distance or prescription, or both.

The design of photographic lenses for use in still or cine cameras is intended to produce a lens that yields the most acceptable rendition of the subject being photographed within a range of constraints that include cost, weight and materials. For many other optical devices such as telescopes, microscopes and theodolites where the visual image is observed but often not recorded the design can often be significantly simpler than is the case in a camera where every image is captured on film or image sensor and can be subject to detailed scrutiny at a later stage. Photographic lenses also include those used in enlargers and projectors.

Varilux is a brand name belonging to Essilor International, a producer of corrective lenses. The first version of the lens was invented by Bernard Maitenaz and released in 1959, and was the first modern progressive lens to correct presbyopia. The progressive lens is characterized by correcting near, intermediate and far vision.

Laser blended vision is a laser eye treatment which is used to treat presbyopia or other age-related eye conditions. It can be used to help people that simply need reading glasses, and also those who have started to need bifocal or varifocal spectacle correction due to ageing changes in the eye. It can be used for people who are also short-sighted (myopia) or long-sighted (hyperopia) and who also may have astigmatism.

A corneal inlay is a device which is surgically implanted in the cornea of the eye as a treatment for presbyopia. Successful installation results in reducing dependence on reading glasses, so that the user can more easily engage in everyday tasks such as using a mobile phone, reading store shelf prices and working on a computer.

References

  1. 1 2 Aves O. (1908) Improvements in and relating to Multifocal lenses and the like, and the method of Grinding Same. GB Patent 15,735.
  2. Bennett A. (1973) Variable and Progressive power lenses. Manufacturing Optics Int. Mar, 137–141.
  3. "Progressive Memories & Calculus"
  4. "Milestones in the history of ZEISS eyeglass lenses". Zeiss.com. Archived from the original on 15 April 2016. Retrieved 24 September 2017.
  5. Meister, Darryl J. (June 2005). "Free-Form Surfacing Technology Makes Possible New Levels of Optical Sophistication for Spectacles". Refractive Eyecare for Ophthalmologists. 9 (6): 1–4.
  6. Likai Li; Thomas W. Raasch & Allen Y. Yi (2013). "Simulation and measurement of optical aberrations of injection molded progressive addition lenses". Applied Optics. 52 (24): 6022–6029. Bibcode:2013ApOpt..52.6022L. doi:10.1364/AO.52.006022. PMID   24085007.
  7. Sheedy J, Hardy RF, Hayes JR (2006). "Progressive addition lenses—measurements and ratings". Optometry. 77 (1): 23–39. doi:10.1016/j.optm.2005.10.019.
  8. Progressive Addition Lenses: History, Design, Wearer Satisfaction and Trends Pope, D R OSA TOPS Vol. 35, Vision Science and Its Applications, 2000