Quantum metamaterial

Last updated

Quantum metamaterials apply the science of metamaterials and the rules of quantum mechanics to control electromagnetic radiation. In the broad sense, a quantum metamaterial is a metamaterial in which certain quantum properties of the medium must be taken into account and whose behaviour is thus described by both Maxwell's equations and the Schrödinger equation. Its behaviour reflects the existence of both EM waves and matter waves. The constituents can be at nanoscopic or microscopic scales, depending on the frequency range (e.g., optical or microwave). [1] [2] [3] [4] [5]

Contents

In a more strict approach, a quantum metamaterial should demonstrate coherent quantum dynamics. Such a system is essentially a spatially extended controllable quantum object that allows additional ways of controlling the propagation of electromagnetic waves. [2] [3] [4] [5] [6]

Quantum metamaterials can be narrowly defined as optical media that: [7]

Research

Fundamental research in quantum metamaterials creates opportunities for novel investigations in quantum phase transition, new perspectives on adiabatic quantum computation and a route to other quantum technology applications. Such a system is essentially a spatially-extended controllable quantum object that allows additional ways of controlling electromagnetic wave propagation. [6] [7]

In other words, quantum metamaterials incorporate quantum coherent states in order to control and manipulate electromagnetic radiation. With these materials, quantum information processing is combined with the science of metamaterials (periodic artificial electromagnetic materials). The unit cells can be imagined to function as qubits that maintain quantum coherence "long enough for the electromagnetic pulse to travel across". The quantum state is achieved through the material's individual cells. As each cell interacts with the propagating electromagnetic pulse, the whole system retains quantum coherence. [6] [7]

Several types of metamaterials are being studied. Nanowires can use quantum dots as the unit cells or artificial atoms of the structure, arranged as periodic nanostructures. This material demonstrates a negative index of refraction and effective magnetism and is simple to build. The radiated wavelength of interest is much larger than the constituent diameter. Another type uses periodically arranged cold atom cells, accomplished with ultra-cold gasses. A photonic bandgap can be demonstrated with this structure, along with tunability and control as a quantum system. [3] Quantum metamaterial prototypes based on superconducting devices with [9] [10] and without [11] Josephson junctions are being actively investigated. Recently a superconducting quantum metamaterial prototype based on flux qubits was realized. [12]

See also

Related Research Articles

<span class="mw-page-title-main">Atomic electron transition</span> Change of an electron between energy levels within an atom

In atomic physics and chemistry, an atomic electron transition is an electron changing from one energy level to another within an atom or artificial atom. The time scale of a quantum jump has not been measured experimentally. However, the Franck–Condon principle binds the upper limit of this parameter to the order of attoseconds.

This is a timeline of quantum computing.

<span class="mw-page-title-main">Surface acoustic wave</span> Sound wave which travels along the surface of an elastic material

A surface acoustic wave (SAW) is an acoustic wave traveling along the surface of a material exhibiting elasticity, with an amplitude that typically decays exponentially with depth into the material, such that they are confined to a depth of about one wavelength.

<span class="mw-page-title-main">Charge qubit</span> Superconducting qubit implementation

In quantum computing, a charge qubit is a qubit whose basis states are charge states. In superconducting quantum computing, a charge qubit is formed by a tiny superconducting island coupled by a Josephson junction to a superconducting reservoir. The state of the qubit is determined by the number of Cooper pairs that have tunneled across the junction. In contrast with the charge state of an atomic or molecular ion, the charge states of such an "island" involve a macroscopic number of conduction electrons of the island. The quantum superposition of charge states can be achieved by tuning the gate voltage U that controls the chemical potential of the island. The charge qubit is typically read-out by electrostatically coupling the island to an extremely sensitive electrometer such as the radio-frequency single-electron transistor.

Superconducting quantum computing is a branch of solid state quantum computing that implements superconducting electronic circuits using superconducting qubits as artificial atoms, or quantum dots. For superconducting qubits, the two logic states are the ground state and the excited state, denoted respectively. Research in superconducting quantum computing is conducted by companies such as Google, IBM, IMEC, BBN Technologies, Rigetti, and Intel. Many recently developed QPUs use superconducting architecture.

Atomic coherence is the induced coherence between levels of a multi-level atomic system.

<span class="mw-page-title-main">Majorana fermion</span> Fermion that is its own antiparticle

A Majorana fermion, also referred to as a Majorana particle, is a fermion that is its own antiparticle. They were hypothesised by Ettore Majorana in 1937. The term is sometimes used in opposition to a Dirac fermion, which describes fermions that are not their own antiparticles.

In physics, quantum acoustics is the study of sound under conditions such that quantum mechanical effects are relevant. For most applications, classical mechanics are sufficient to accurately describe the physics of sound. However very high frequency sounds, or sounds made at very low temperatures may be subject to quantum effects.

<span class="mw-page-title-main">D-Wave Systems</span> Canadian quantum computing company

D-Wave Quantum Systems Inc. is a Canadian quantum computing company, based in Burnaby, British Columbia. D-Wave claims to be the world's first company to sell computers that exploit quantum effects in their operation. D-Wave's early customers include Lockheed Martin, the University of Southern California, Google/NASA, and Los Alamos National Lab.

A quantum bus is a device which can be used to store or transfer information between independent qubits in a quantum computer, or combine two qubits into a superposition. It is the quantum analog of a classical bus.

<span class="mw-page-title-main">Acoustic metamaterial</span> Material designed to manipulate sound waves

An acoustic metamaterial, sonic crystal, or phononic crystal is a material designed to control, direct, and manipulate sound waves or phonons in gases, liquids, and solids. Sound wave control is accomplished through manipulating parameters such as the bulk modulus β, density ρ, and chirality. They can be engineered to either transmit, or trap and amplify sound waves at certain frequencies. In the latter case, the material is an acoustic resonator.

Circuit quantum electrodynamics provides a means of studying the fundamental interaction between light and matter. As in the field of cavity quantum electrodynamics, a single photon within a single mode cavity coherently couples to a quantum object (atom). In contrast to cavity QED, the photon is stored in a one-dimensional on-chip resonator and the quantum object is no natural atom but an artificial one. These artificial atoms usually are mesoscopic devices which exhibit an atom-like energy spectrum. The field of circuit QED is a prominent example for quantum information processing and a promising candidate for future quantum computation.

<span class="mw-page-title-main">Transmon</span> Superconducting qubit implementation

In quantum computing, and more specifically in superconducting quantum computing, a transmon is a type of superconducting charge qubit designed to have reduced sensitivity to charge noise. The transmon was developed by Robert J. Schoelkopf, Michel Devoret, Steven M. Girvin, and their colleagues at Yale University in 2007. Its name is an abbreviation of the term transmission line shunted plasma oscillation qubit; one which consists of a Cooper-pair box "where the two superconductors are also [capacitively] shunted in order to decrease the sensitivity to charge noise, while maintaining a sufficient anharmonicity for selective qubit control".

<span class="mw-page-title-main">Quantum simulator</span> Simulators of quantum mechanical systems

Quantum simulators permit the study of a quantum system in a programmable fashion. In this instance, simulators are special purpose devices designed to provide insight about specific physics problems. Quantum simulators may be contrasted with generally programmable "digital" quantum computers, which would be capable of solving a wider class of quantum problems.

<span class="mw-page-title-main">Michel Devoret</span> French physicist at Yale University

Michel Devoret is a French physicist and F. W. Beinecke Professor of Applied Physics at Yale University. He also holds a position as the Director of the Applied Physics Nanofabrication Lab at Yale. He is known for his pioneering work on macroscopic quantum tunneling, and the single-electron pump as well as in groundbreaking contributions to initiating the fields of circuit quantum electrodynamics and quantronics.

<span class="mw-page-title-main">Yasunobu Nakamura</span> Japanese physicist

Yasunobu Nakamura (中村 泰信 Nakamura Yasunobu) is a Japanese physicist. He is a professor at the University of Tokyo's Research Center for Advanced Science and Technology (RCAST) and the Principal Investigator of the Superconducting Quantum Electronics Research Group (SQERG) at the Center for Emergent Matter Science (CEMS) within RIKEN. He has contributed primarily to the area of quantum information science, particularly in superconducting quantum computing and hybrid quantum systems.

<span class="mw-page-title-main">Irfan Siddiqi</span> American physicist

Irfan Siddiqi is an American physicist and currently a professor of physics at the University of California, Berkeley and a faculty scientist at Lawrence Berkeley National Laboratory (LBNL).

In quantum computing, quantum memory is the quantum-mechanical version of ordinary computer memory. Whereas ordinary memory stores information as binary states, quantum memory stores a quantum state for later retrieval. These states hold useful computational information known as qubits. Unlike the classical memory of everyday computers, the states stored in quantum memory can be in a quantum superposition, giving much more practical flexibility in quantum algorithms than classical information storage.

References

  1. Plumridge, Jonathan; Clarke, Edmund; Murray, Ray; Phillips, Chris (2008). "Ultra-strong coupling effects with quantum metamaterials". Solid State Communications. 146 (9–10): 406. arXiv: cond-mat/0701775 . Bibcode:2008SSCom.146..406P. doi:10.1016/j.ssc.2008.03.027. S2CID   119063144.
  2. 1 2 Rakhmanov, Alexander; Zagoskin, Alexandre; Savel'ev, Sergey; Nori, Franco (2008). "Quantum metamaterials: Electromagnetic waves in a Josephson qubit line". Physical Review B. 77 (14): 144507. arXiv: 0709.1314 . Bibcode:2008PhRvB..77n4507R. doi:10.1103/PhysRevB.77.144507. S2CID   8593352.
  3. 1 2 3 Felbacq, Didier; Antezza, Mauro (2012). "Quantum metamaterials: A brave new world". SPIE Newsroom. doi:10.1117/2.1201206.004296. Note: the DOI is linked to a full text article.
  4. 1 2 Quach, James Q.; Su, Chun-Hsu; Martin, Andrew M.; Greentree, Andrew D.; Hollenberg, Lloyd C. L. (2011). "Reconfigurable quantum metamaterials". Optics Express. 19 (12): 11018–33. arXiv: 1009.4867 . Bibcode:2011OExpr..1911018Q. doi:10.1364/OE.19.011018. PMID   21716331. S2CID   21069483. Note: full text article available - click on title.
  5. 1 2 Zagoskin, A.M. (2011). Quantum Engineering: Theory and Design of Quantum Coherent Structures. Cambridge: Cambridge University Press. pp. 272–311. ISBN   9780521113694.
  6. 1 2 3 Forrester, Derek Michael; Kusmartsev, Feodor V. (2016-04-28). "Whispering galleries and the control of artificial atoms". Scientific Reports. 6: 25084. Bibcode:2016NatSR...625084F. doi:10.1038/srep25084. ISSN   2045-2322. PMC   4848508 . PMID   27122353.
  7. 1 2 3 4 Zagoskin, Alexandre (December 5, 2011). "Quantum metamaterials: concept and possible implementations". Paris: META CONFERENCES, META'12. Retrieved 2012-08-05.
  8. Pile, David (2012). "Metamaterials mature". Nature Photonics. 6 (7): 419. Bibcode:2012NaPho...6..419P. doi:10.1038/nphoton.2012.155. S2CID   123129422.
  9. Astafiev, O.; Zagoskin, A.M.; Abdumalikov Jr., A.A.; Pashkin, Yu.A.; Yamamoto, T.; Inomata, K.; Nakamura, Y.; Tsai, J.S. (2010). "Resonance Fluorescence of a Single Artificial Atom". Science. 327 (5967): 840–3. arXiv: 1002.4944 . Bibcode:2010Sci...327..840A. doi:10.1126/science.1181918. PMID   20150495. S2CID   206523434.
  10. Hutter, Carsten; Tholén, Erik A.; Stannigel, Kai; Lidmar, Jack; Haviland, David B. (2011). "Josephson junction transmission lines as tunable artificial crystals". Physical Review B. 83 (1): 014511. arXiv: 0804.2099 . Bibcode:2011PhRvB..83a4511H. doi:10.1103/PhysRevB.83.014511. S2CID   18117600.
  11. Savinov, V.; Tsiatmas, A.; Buckingham, A. R.; Fedotov, V. A.; de Groot, P. A. J.; Zheludev, N. I. (2012). "Flux Exclusion Superconducting Quantum Metamaterial: Towards Quantum-level Switching". Scientific Reports. 2: 450. Bibcode:2012NatSR...2E.450S. doi:10.1038/srep00450. PMC   3371586 . PMID   22690319.
  12. Emerging Technology From the arXiv September 30, 2013 (2013-09-30). "World's First Quantum Metamaterial Unveiled | MIT Technology Review". Technologyreview.com. Retrieved 2013-10-07.{{cite web}}: CS1 maint: numeric names: authors list (link)
    "Наука и техника: Наука: Российские физики создали первый в мире квантовый метаматериал". Lenta.ru. Retrieved 2013-10-07.
    Macha, Pascal; Oelsner, Gregor; Reiner, Jan-Michael; Marthaler, Michael; André, Stephan; Schön, Gerd; Huebner, Uwe; Meyer, Hans-Georg; Il'ichev, Evgeni; Ustinov, Alexey V. (2014). "Implementation of a Quantum Metamaterial". Nature Communications. 5: 5146. arXiv: 1309.5268 . Bibcode:2014NatCo...5.5146M. doi:10.1038/ncomms6146. PMID   25312205. S2CID   7835759.