Radio fingerprinting

Last updated

Radio fingerprinting is a process that identifies a cellular phone or any other radio transmitter by the "fingerprint" that characterizes its signal transmission and is hard to imitate. An electronic fingerprint makes it possible to identify a wireless device by its radio transmission characteristics. Radio fingerprinting is commonly used by cellular operators to prevent cloning of cell phones — a cloned device will have the same numeric equipment identity but a different radio fingerprint.

Essentially, each transmitter (cell phones are just one type of radio transmitter) has a rise time signature when first keyed which is caused by the slight variations of component values during manufacture. Once the rise time signature is captured and assigned to a callsign, the use of a different transmitter using the same callsign is easily detected. Such systems are used in military signals intelligence and by radio regulatory agencies such as the U.S. Federal Communications Commission (FCC) for identifying illegal transmitters. They are also used for assessing usage for billing purposes in Subscriber Mobile Radio (SMR) systems.

This topic has garnered great attention in recent years as the radio fingerprinting technique offers a "physical layer" authentication solution, which can provide fundamentally superior performance than traditional higher-layer encryption solutions. The topic has been studied by various researchers across multiple disciplines, including Signal Processing, Antenna and Propagation and Computer Science. [1] [2] [3]

Related Research Articles

<span class="mw-page-title-main">Time-division multiple access</span> Channel access method for networks using a shared communications medium

Time-division multiple access (TDMA) is a channel access method for shared-medium networks. It allows several users to share the same frequency channel by dividing the signal into different time slots. The users transmit in rapid succession, one after the other, each using its own time slot. This allows multiple stations to share the same transmission medium while using only a part of its channel capacity. Dynamic TDMA is a TDMA variant that dynamically reserves a variable number of time slots in each frame to variable bit-rate data streams, based on the traffic demand of each data stream.

<span class="mw-page-title-main">Wireless network</span> Computer network not fully connected by cables

A wireless network is a computer network that uses wireless data connections between network nodes. Wireless networking allows homes, telecommunications networks and business installations to avoid the costly process of introducing cables into a building, or as a connection between various equipment locations. Admin telecommunications networks are generally implemented and administered using radio communication. This implementation takes place at the physical level (layer) of the OSI model network structure.

<span class="mw-page-title-main">Repeater</span> Relay station

In telecommunications, a repeater is an electronic device that receives a signal and retransmits it. Repeaters are used to extend transmissions so that the signal can cover longer distances or be received on the other side of an obstruction. Some types of repeaters broadcast an identical signal, but alter its method of transmission, for example, on another frequency or baud rate.

<span class="mw-page-title-main">Wireless</span> Transfer of information or power that does not require the use of physical wires

Wireless communication is the transfer of information (telecommunication) between two or more points without the use of an electrical conductor, optical fiber or other continuous guided medium for the transfer. The most common wireless technologies use radio waves. With radio waves, intended distances can be short, such as a few meters for Bluetooth or as far as millions of kilometers for deep-space radio communications. It encompasses various types of fixed, mobile, and portable applications, including two-way radios, cellular telephones, personal digital assistants (PDAs), and wireless networking. Other examples of applications of radio wireless technology include GPS units, garage door openers, wireless computer mouse, keyboards and headsets, headphones, radio receivers, satellite television, broadcast television and cordless telephones. Somewhat less common methods of achieving wireless communications involve other electromagnetic phenomena, such as light and magnetic or electric fields, or the use of sound.

<span class="mw-page-title-main">Wireless mesh network</span> Radio nodes organized in a mesh topology

A wireless mesh network (WMN) is a communications network made up of radio nodes organized in a mesh topology. It can also be a form of wireless ad hoc network.

<span class="mw-page-title-main">Cellular network</span> Communication network

A cellular network or mobile network is a telecommunications network where the link to and from end nodes is wireless and the network is distributed over land areas called cells, each served by at least one fixed-location transceiver. These base stations provide the cell with the network coverage which can be used for transmission of voice, data, and other types of content. A cell typically uses a different set of frequencies from neighboring cells, to avoid interference and provide guaranteed service quality within each cell.

<span class="mw-page-title-main">Mobile telephony</span> Provision of telephone services to phones

Mobile telephony is the provision of telephone services to mobile phones rather than fixed-location phones. Telephony is supposed to specifically point to a voice-only service or connection, though sometimes the line may blur.

Radiolocation, also known as radiolocating or radiopositioning, is the process of finding the location of something through the use of radio waves. It generally refers to passive uses, particularly radar—as well as detecting buried cables, water mains, and other public utilities. It is similar to radionavigation, but radiolocation usually refers to passively finding a distant object rather than actively one's own position. Both are types of radiodetermination. Radiolocation is also used in real-time locating systems (RTLS) for tracking valuable assets.

The air interface, or access mode, is the communication link between the two stations in mobile or wireless communication. The air interface involves both the physical and data link layers of the OSI model for a connection.

An air gap, air wall, air gapping or disconnected network is a network security measure employed on one or more computers to ensure that a secure computer network is physically isolated from unsecured networks, such as the public Internet or an unsecured local area network. It means a computer or network has no network interface controllers connected to other networks, with a physical or conceptual air gap, analogous to the air gap used in plumbing to maintain water quality.

Phone cloning is the copying of identity from one cellular device to another.

<span class="mw-page-title-main">Radio beacon</span> Radio transmitter to identify a location for navigation aid

In navigation, a radio beacon or radiobeacon is a kind of beacon, a device that marks a fixed location and allows direction-finding equipment to find relative bearing. But instead of employing visible light, radio beacons transmit electromagnetic radiation in the radio wave band. They are used for direction-finding systems on ships, aircraft and vehicles.

<span class="mw-page-title-main">MIMO</span> Use of multiple antennas in radio

In radio, multiple-input and multiple-output (MIMO) is a method for multiplying the capacity of a radio link using multiple transmission and receiving antennas to exploit multipath propagation. MIMO has become an essential element of wireless communication standards including IEEE 802.11n, IEEE 802.11ac, HSPA+ (3G), WiMAX, and Long Term Evolution (LTE). More recently, MIMO has been applied to power-line communication for three-wire installations as part of the ITU G.hn standard and of the HomePlug AV2 specification.

<span class="mw-page-title-main">Radio</span> Technology of using radio waves to carry information

Radio is the technology of signaling and communicating using radio waves. Radio waves are electromagnetic waves of frequency between 3 hertz (Hz) and 3,000 gigahertz (GHz). They are generated by an electronic device called a transmitter connected to an antenna which radiates the waves, and received by another antenna connected to a radio receiver. Radio is widely used in modern technology, in radio communication, radar, radio navigation, remote control, remote sensing, and other applications.

Wi-Fi positioning system is a geolocation system that uses the characteristics of nearby Wi-Fi hotspots and other wireless access points to discover where a device is located.

Real-time locating systems (RTLS), also known as real-time tracking systems, are used to automatically identify and track the location of objects or people in real time, usually within a building or other contained area. Wireless RTLS tags are attached to objects or worn by people, and in most RTLS, fixed reference points receive wireless signals from tags to determine their location. Examples of real-time locating systems include tracking automobiles through an assembly line, locating pallets of merchandise in a warehouse, or finding medical equipment in a hospital.

Physical unclonable function (PUF), sometimes also called physically unclonable function, is a physical entity that is embodied in a physical structure and is easy to evaluate but hard to predict.

Air-gap malware is malware that is designed to defeat the air-gap isolation of secure computer systems using various air-gap covert channels.

Implicit authentication (IA) is a technique that allows the smart device to recognize its owner by being acquainted with his/her behaviors. It is a technique that uses machine learning algorithms to learn user behavior through various sensors on the smart devices and achieve user identification. Most of the current authentication techniques, e.g., password, pattern lock, finger print and iris recognition, are explicit authentication which require user input. Comparing with explicit authentication, IA is transparent to users during the usage, and it significantly increases the usability by reducing time users spending on login, in which users find it more annoying than lack of cellular coverage.

WiFi Sensing uses existing Wi-Fi signals to detect events or changes such as motion, gesture recognition, and biometric measurement. WiFi Sensing is a combination of Wi-Fi and RADAR sensing technology working in tandem to enable usage of the same Wi-Fi transceiver hardware and RF spectrum for both communication and sensing.

References

  1. Brik, Vladimir; Banerjee, Suman; Gruteser, Marco; Oh, Sangho (14 September 2008). "Wireless device identification with radiometric signatures" (PDF). Proceedings of the 14th ACM international conference on Mobile computing and networking. pp. 116–127. doi:10.1145/1409944.1409959. ISBN   9781605580968. S2CID   8960221 . Retrieved 1 March 2023.
  2. Abanto, Luis; Bäuml, Andreas; Sim, Allyson; Hollick, Matthias; Asadi, Arash (2020). "Stay Connected, Leave no Trace: Enhancing Security and Privacy in WiFi via Obfuscating Radiometric Fingerprints". ACM Sigmetrics. 6 (4): 1346–1354. arXiv: 2011.12644 . doi:10.1145/3428329. S2CID   227162019.
  3. Shi, Yan; Jensen, Michael A. (2011). "Improved Radiometric Identification of Wireless Devices Using MIMO Transmission". IEEE Transactions on Information Forensics and Security. 6 (4): 1346–1354. doi:10.1109/TIFS.2011.2162949. S2CID   16696253.