Regular paperfolding sequence

Last updated

In mathematics the regular paperfolding sequence, also known as the dragon curve sequence, is an infinite sequence of 0s and 1s. It is obtained from the repeating partial sequence

Contents

1, ?, 0, ?, 1, ?, 0, ?, 1, ?, 0, ?, ...

by filling in the question marks by another copy of the whole sequence. The first few terms of the resulting sequence are:

1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, ... (sequence A014577 in the OEIS)

If a strip of paper is folded repeatedly in half in the same direction, times, it will get folds, whose direction (left or right) is given by the pattern of 0's and 1's in the first terms of the regular paperfolding sequence. Opening out each fold to create a right-angled corner (or, equivalently, making a sequence of left and right turns through a regular grid, following the pattern of the paperfolding sequence) produces a sequence of polygonal chains that approaches the dragon curve fractal: [1]

1 Order Dragon Curve.svg 2 Order Dragon Curve.svg 3 Order Dragon Curve.svg 4 Order Dragon Curve.svg 5 Order Dragon Curve.svg
1 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 0 1 1 1 0 0 1 0 0 ...

Properties

The value of any given term in the regular paperfolding sequence, starting with , can be found recursively as follows. Divide by two, as many times as possible, to get a factorization of the form where is an odd number. Then

Thus, for instance, : dividing 12 by two, twice, leaves the odd number 3. As another example, because 13 is congruent to 1 mod 4.

The paperfolding word 1101100111001001..., which is created by concatenating the terms of the regular paperfolding sequence, is a fixed point of the morphism or string substitution rules

11 1101
01 1001
10 1100
00 1000

as follows:

11 1101 11011001 1101100111001001 11011001110010011101100011001001 ...

It can be seen from the morphism rules that the paperfolding word contains at most three consecutive 0s and at most three consecutive 1s.

The paperfolding sequence also satisfies the symmetry relation:

which shows that the paperfolding word can be constructed as the limit of another iterated process as follows:

1
1 1 0
110 1 100
1101100 1 1100100
110110011100100 1 110110001100100

In each iteration of this process, a 1 is placed at the end of the previous iteration's string, then this string is repeated in reverse order, replacing 0 by 1 and vice versa.

Generating function

The generating function of the paperfolding sequence is given by

From the construction of the paperfolding sequence, it can be seen that G satisfies the functional relation

Paperfolding constant

Substituting x = 0.5 into the generating function gives a real number between 0 and 1 whose binary expansion is the paperfolding word

This number is known as the paperfolding constant [2] and has the value

(sequence A143347 in the OEIS )

General paperfolding sequence

The regular paperfolding sequence corresponds to folding a strip of paper consistently in the same direction. If we allow the direction of the fold to vary at each step we obtain a more general class of sequences. Given a binary sequence (fi), we can define a general paperfolding sequence with folding instructions (fi).

For a binary word w, let w denote the reverse of the complement of w. Define an operator Fa as

and then define a sequence of words depending on the (fi) by w0 = ε,

The limit w of the sequence wn is a paperfolding sequence. The regular paperfolding sequence corresponds to the folding sequence fi = 1 for all i.

If n = m·2k where m is odd then

which may be used as a definition of a paperfolding sequence. [3]

Properties

Related Research Articles

In mathematics, the Bernoulli numbersBn are a sequence of rational numbers which occur frequently in analysis. The Bernoulli numbers appear in the Taylor series expansions of the tangent and hyperbolic tangent functions, in Faulhaber's formula for the sum of m-th powers of the first n positive integers, in the Euler–Maclaurin formula, and in expressions for certain values of the Riemann zeta function.

<span class="mw-page-title-main">Fibonacci sequence</span> Numbers obtained by adding the two previous ones

In mathematics, the Fibonacci sequence is a sequence in which each number is the sum of the two preceding ones. Numbers that are part of the Fibonacci sequence are known as Fibonacci numbers, commonly denoted Fn. The sequence commonly starts from 0 and 1, although some authors start the sequence from 1 and 1 or sometimes from 1 and 2. Starting from 0 and 1, the sequence begins

In number theory, the Legendre symbol is a multiplicative function with values 1, −1, 0 that is a quadratic character modulo of an odd prime number p: its value at a (nonzero) quadratic residue mod p is 1 and at a non-quadratic residue (non-residue) is −1. Its value at zero is 0.

The Collatz conjecture is one of the most famous unsolved problems in mathematics. The conjecture asks whether repeating two simple arithmetic operations will eventually transform every positive integer into 1. It concerns sequences of integers in which each term is obtained from the previous term as follows: if the previous term is even, the next term is one half of the previous term. If the previous term is odd, the next term is 3 times the previous term plus 1. The conjecture is that these sequences always reach 1, no matter which positive integer is chosen to start the sequence. The conjecture has been shown to hold for all positive integers up to 2.95×1020, but no general proof has been found.

In mathematics, the Euler numbers are a sequence En of integers defined by the Taylor series expansion

<span class="mw-page-title-main">Fourier series</span> Decomposition of periodic functions into sums of simpler sinusoidal forms

A Fourier series is an expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series, but not all trigonometric series are Fourier series. By expressing a function as a sum of sines and cosines, many problems involving the function become easier to analyze because trigonometric functions are well understood. For example, Fourier series were first used by Joseph Fourier to find solutions to the heat equation. This application is possible because the derivatives of trigonometric functions fall into simple patterns. Fourier series cannot be used to approximate arbitrary functions, because most functions have infinitely many terms in their Fourier series, and the series do not always converge. Well-behaved functions, for example smooth functions, have Fourier series that converge to the original function. The coefficients of the Fourier series are determined by integrals of the function multiplied by trigonometric functions, described in Common forms of the Fourier series below.

This article collects together a variety of proofs of Fermat's little theorem, which states that

In mathematics, a generating function is a representation of an infinite sequence of numbers as the coefficients of a formal power series. Unlike an ordinary series, the formal power series is not required to converge: in fact, the generating function is not actually regarded as a function, and the "variable" remains an indeterminate. Generating functions were first introduced by Abraham de Moivre in 1730, in order to solve the general linear recurrence problem. One can generalize to formal power series in more than one indeterminate, to encode information about infinite multi-dimensional arrays of numbers.

<span class="mw-page-title-main">Chebyshev polynomials</span> Polynomial sequence

The Chebyshev polynomials are two sequences of polynomials related to the cosine and sine functions, notated as and . They can be defined in several equivalent ways, one of which starts with trigonometric functions:

In number theory, a Wall–Sun–Sun prime or Fibonacci–Wieferich prime is a certain kind of prime number which is conjectured to exist, although none are known.

The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares. It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. Since the problem had withstood the attacks of the leading mathematicians of the day, Euler's solution brought him immediate fame when he was twenty-eight. Euler generalised the problem considerably, and his ideas were taken up more than a century later by Bernhard Riemann in his seminal 1859 paper "On the Number of Primes Less Than a Given Magnitude", in which he defined his zeta function and proved its basic properties. The problem is named after Basel, hometown of Euler as well as of the Bernoulli family who unsuccessfully attacked the problem.

In mathematics, a divergent series is an infinite series that is not convergent, meaning that the infinite sequence of the partial sums of the series does not have a finite limit.

In mathematics, the Leibniz formula for π, named after Gottfried Wilhelm Leibniz, states that

In mathematics, Hensel's lemma, also known as Hensel's lifting lemma, named after Kurt Hensel, is a result in modular arithmetic, stating that if a univariate polynomial has a simple root modulo a prime number p, then this root can be lifted to a unique root modulo any higher power of p. More generally, if a polynomial factors modulo p into two coprime polynomials, this factorization can be lifted to a factorization modulo any higher power of p.

In mathematics, the Stirling polynomials are a family of polynomials that generalize important sequences of numbers appearing in combinatorics and analysis, which are closely related to the Stirling numbers, the Bernoulli numbers, and the generalized Bernoulli polynomials. There are multiple variants of the Stirling polynomial sequence considered below most notably including the Sheffer sequence form of the sequence, , defined characteristically through the special form of its exponential generating function, and the Stirling (convolution) polynomials, , which also satisfy a characteristic ordinary generating function and that are of use in generalizing the Stirling numbers to arbitrary complex-valued inputs. We consider the "convolution polynomial" variant of this sequence and its properties second in the last subsection of the article. Still other variants of the Stirling polynomials are studied in the supplementary links to the articles given in the references.

<span class="mw-page-title-main">Blancmange curve</span> Fractal curve resembling a blancmange pudding

In mathematics, the blancmange curve is a self-affine fractal curve constructible by midpoint subdivision. It is also known as the Takagi curve, after Teiji Takagi who described it in 1901, or as the Takagi–Landsberg curve, a generalization of the curve named after Takagi and Georg Landsberg. The name blancmange comes from its resemblance to a Blancmange pudding. It is a special case of the more general de Rham curve.

In mathematics, infinite compositions of analytic functions (ICAF) offer alternative formulations of analytic continued fractions, series, products and other infinite expansions, and the theory evolving from such compositions may shed light on the convergence/divergence of these expansions. Some functions can actually be expanded directly as infinite compositions. In addition, it is possible to use ICAF to evaluate solutions of fixed point equations involving infinite expansions. Complex dynamics offers another venue for iteration of systems of functions rather than a single function. For infinite compositions of a single function see Iterated function. For compositions of a finite number of functions, useful in fractal theory, see Iterated function system.

References

  1. Weisstein, Eric W. "Dragon Curve". MathWorld .
  2. Weisstein, Eric W. "Paper Folding Constant". MathWorld .
  3. 1 2 Everest, Graham; van der Poorten, Alf; Shparlinski, Igor; Ward, Thomas (2003). Recurrence sequences. Mathematical Surveys and Monographs. Vol. 104. Providence, RI: American Mathematical Society. p. 235. ISBN   0-8218-3387-1. Zbl   1033.11006.