Relaxation oscillator

Last updated
Simple relaxation oscillator made by feeding back an inverting Schmitt trigger's output voltage through a RC network to its input. Animated schmitt-trigger-oscillator.gif
Simple relaxation oscillator made by feeding back an inverting Schmitt trigger's output voltage through a RC network to its input.

In electronics a relaxation oscillator is a nonlinear electronic oscillator circuit that produces a nonsinusoidal repetitive output signal, such as a triangle wave or square wave. [1] [2] [3] [4] The circuit consists of a feedback loop containing a switching device such as a transistor, comparator, relay, [5] op amp, or a negative resistance device like a tunnel diode, that repetitively charges a capacitor or inductor through a resistance until it reaches a threshold level, then discharges it again. [4] [6] The period of the oscillator depends on the time constant of the capacitor or inductor circuit. [2] The active device switches abruptly between charging and discharging modes, and thus produces a discontinuously changing repetitive waveform. [2] [4] This contrasts with the other type of electronic oscillator, the harmonic or linear oscillator, which uses an amplifier with feedback to excite resonant oscillations in a resonator, producing a sine wave. [7]

Contents

The blinking turn signal on some motor vehicles is generated by a simple relaxation oscillator powering a relay. Turnsignals On.jpg
The blinking turn signal on some motor vehicles is generated by a simple relaxation oscillator powering a relay.

Relaxation oscillators are used to produce low[ clarification needed ] frequency signals for applications such as blinking lights (turn signals) and electronic beepers and in voltage controlled oscillators (VCOs), inverters and switching power supplies, dual-slope analog to digital converters, and function generators.

The term relaxation oscillator is also applied to dynamical systems in many diverse areas of science that produce nonlinear oscillations and can be analyzed using the same mathematical model as electronic relaxation oscillators. [8] [9] [10] [11] For example, geothermal geysers, [12] [13] networks of firing nerve cells, [11] thermostat controlled heating systems, [14] coupled chemical reactions, [9] the beating human heart, [11] [14] earthquakes, [12] the squeaking of chalk on a blackboard, [14] the cyclic populations of predator and prey animals, and gene activation systems [9] have been modeled as relaxation oscillators. Relaxation oscillations are characterized by two alternating processes on different time scales: a long relaxation period during which the system approaches an equilibrium point, alternating with a short impulsive period in which the equilibrium point shifts. [11] [12] [13] [15] The period of a relaxation oscillator is mainly determined by the relaxation time constant. [11] Relaxation oscillations are a type of limit cycle and are studied in nonlinear control theory. [16]

Electronic relaxation oscillators

A vacuum tube Abraham-Bloch multivibrator relaxation oscillator, France, 1920 (small box, left). Its harmonics are being used to calibrate a wavemeter (center). Vacuum tube multivibrator calibrating wavemeter 1920.jpg
A vacuum tube Abraham-Bloch multivibrator relaxation oscillator, France, 1920 (small box, left). Its harmonics are being used to calibrate a wavemeter (center).
Original vacuum tube Abraham-Bloch multivibrator oscillator, from their 1919 paper Original Abraham-Bloch multivibrator circuit.png
Original vacuum tube Abraham-Bloch multivibrator oscillator, from their 1919 paper

The first relaxation oscillator circuit, the astable multivibrator, was invented by Henri Abraham and Eugene Bloch using vacuum tubes during World War I. [17] [18] Balthasar van der Pol first distinguished relaxation oscillations from harmonic oscillations, originated the term "relaxation oscillator", and derived the first mathematical model of a relaxation oscillator, the influential Van der Pol oscillator model, in 1920. [18] [19] [20] Van der Pol borrowed the term relaxation from mechanics; the discharge of the capacitor is analogous to the process of stress relaxation , the gradual disappearance of deformation and return to equilibrium in an inelastic medium. [21] Relaxation oscillators can be divided into two classes [13]

Before the advent of microelectronics, simple relaxation oscillators often used a negative resistance device with hysteresis such as a thyratron tube, [22] neon lamp, [22] or unijunction transistor, however today they are more often built with dedicated integrated circuits such as the 555 timer chip.

Applications

Relaxation oscillators are generally used to produce low frequency signals for such applications as blinking lights, electronic beepers. During the vacuum tube era they were used as oscillators in electronic organs and horizontal deflection circuits and time bases for CRT oscilloscopes; one of the most common was the Miller integrator circuit invented by Alan Blumlein, which used vacuum tubes as a constant current source to produce a very linear ramp. [22] They are also used in voltage controlled oscillators (VCOs), [23] inverters and switching power supplies, dual-slope analog to digital converters, and in function generators to produce square and triangle waves. Relaxation oscillators are widely used because they are easier to design than linear oscillators, are easier to fabricate on integrated circuit chips because they do not require inductors like LC oscillators, [23] [24] and can be tuned over a wide frequency range. [24] However they have more phase noise [23] and poorer frequency stability than linear oscillators. [2] [23]

PearsonAnson oscillator

Circuit diagram of a capacitive relaxation oscillator with a neon lamp threshold device NeonBulbRelaxationOscillator.svg
Circuit diagram of a capacitive relaxation oscillator with a neon lamp threshold device

This example can be implemented with a capacitive or resistive-capacitive integrating circuit driven respectively by a constant current or voltage source, and a threshold device with hysteresis (neon lamp, thyratron, diac, reverse-biased bipolar transistor, [25] or unijunction transistor) connected in parallel to the capacitor. The capacitor is charged by the input source causing the voltage across the capacitor to rise. The threshold device does not conduct at all until the capacitor voltage reaches its threshold (trigger) voltage. It then increases heavily its conductance in an avalanche-like manner because of the inherent positive feedback, which quickly discharges the capacitor. When the voltage across the capacitor drops to some lower threshold voltage, the device stops conducting and the capacitor begins charging again, and the cycle repeats ad infinitum.

If the threshold element is a neon lamp, [nb 1] [nb 2] the circuit also provides a flash of light with each discharge of the capacitor. This lamp example is depicted below in the typical circuit used to describe the Pearson–Anson effect. The discharging duration can be extended by connecting an additional resistor in series to the threshold element. The two resistors form a voltage divider; so, the additional resistor has to have low enough resistance to reach the low threshold.

Alternative implementation with 555 timer

A similar relaxation oscillator can be built with a 555 timer IC (acting in astable mode) that takes the place of the neon bulb above. That is, when a chosen capacitor is charged to a design value, (e.g., 2/3 of the power supply voltage) comparators within the 555 timer flip a transistor switch that gradually discharges that capacitor through a chosen resistor (which determine the RC time constant) to ground. At the instant the capacitor falls to a sufficiently low value (e.g., 1/3 of the power supply voltage), the switch flips to let the capacitor charge up again. The popular 555's comparator design permits accurate operation with any supply from 5 to 15 volts or even wider.

Other, non-comparator oscillators may have unwanted timing changes if the supply voltage changes.

Inductive oscillator

Basis of solid-state Blocking oscillator Blocking oscillator.jpg
Basis of solid-state Blocking oscillator

A blocking oscillator using the inductive properties of a pulse transformer to generate square waves by driving the transformer into saturation, which then cuts the transformer supply current until the transformer unloads and desaturates, which then triggers another pulse of supply current, generally using a single transistor as the switching element.

Comparatorbased relaxation oscillator

Alternatively, when the capacitor reaches each threshold, the charging source can be switched from the positive power supply to the negative power supply or vice versa. The earlier inverting Schmitt trigger animated example operates on the same principle (since the Schmitt trigger internally performs comparison). This section will analyze a similar implementation using a comparator as a discrete component.

A comparator-based hysteretic oscillator. OpAmpHystereticOscillator.svg
A comparator-based hysteretic oscillator.

This relaxation oscillator is a hysteretic oscillator, named this way because of the hysteresis created by the positive feedback loop implemented with the comparator (similar to an operational amplifier). A circuit that implements this form of hysteretic switching is known as a Schmitt trigger. Alone, the trigger is a bistable multivibrator. However, the slow negative feedback added to the trigger by the RC circuit causes the circuit to oscillate automatically. That is, the addition of the RC circuit turns the hysteretic bistable multivibrator into an astable multivibrator.

General concept

The system is in unstable equilibrium if both the inputs and outputs of the comparator are at zero volts. The moment any sort of noise, be it thermal or electromagnetic noise brings the output of the comparator above zero (the case of the comparator output going below zero is also possible, and a similar argument to what follows applies), the positive feedback in the comparator results in the output of the comparator saturating at the positive rail.

In other words, because the output of the comparator is now positive, the non-inverting input to the comparator is also positive, and continues to increase as the output increases, due to the voltage divider. After a short time, the output of the comparator is the positive voltage rail, .

Series RC Circuit Series-RC.svg
Series RC Circuit

The inverting input and the output of the comparator are linked by a series RC circuit. Because of this, the inverting input of the comparator asymptotically approaches the comparator output voltage with a time constant RC. At the point where voltage at the inverting input is greater than the non-inverting input, the output of the comparator falls quickly due to positive feedback.

This is because the non-inverting input is less than the inverting input, and as the output continues to decrease, the difference between the inputs gets more and more negative. Again, the inverting input approaches the comparator's output voltage asymptotically, and the cycle repeats itself once the non-inverting input is greater than the inverting input, hence the system oscillates.

Example: Differential equation analysis of a comparator-based relaxation oscillator

Transient analysis of a comparator-based relaxation oscillator. Opamprelaxationoscillator.svg
Transient analysis of a comparator-based relaxation oscillator.

is set by across a resistive voltage divider:

is obtained using Ohm's law and the capacitor differential equation:

Rearranging the differential equation into standard form results in the following:

Notice there are two solutions to the differential equation, the driven or particular solution and the homogeneous solution. Solving for the driven solution, observe that for this particular form, the solution is a constant. In other words, where A is a constant and .

Using the Laplace transform to solve the homogeneous equation results in

is the sum of the particular and homogeneous solution.

Solving for B requires evaluation of the initial conditions. At time 0, and . Substituting into our previous equation,

Frequency of oscillation

First let's assume that for ease of calculation. Ignoring the initial charge up of the capacitor, which is irrelevant for calculations of the frequency, note that charges and discharges oscillate between and . For the circuit above, Vss must be less than 0. Half of the period (T) is the same as time that switches from Vdd. This occurs when V charges up from to .

When Vss is not the inverse of Vdd we need to worry about asymmetric charge up and discharge times. Taking this into account we end up with a formula of the form:

Which reduces to the above result in the case that .

See also

Notes

  1. When a (neon) cathode glow lamp or thyratron are used as the trigger devices a second resistor with a value of a few tens to hundreds ohms is often placed in series with the gas trigger device to limit the current from the discharging capacitor and prevent the electrodes of the lamp rapidly sputtering away or the cathode coating of the thyratron being damaged by the repeated pulses of heavy current.
  2. Trigger devices with a third control connection, such as the thyratron or unijunction transistor allow the timing of the discharge of the capacitor to be synchronized with a control pulse. Thus the sawtooth output can be synchronized to signals produced by other circuit elements as it is often used as a scan waveform for a display, such as a cathode ray tube.

Related Research Articles

An electronic oscillator is an electronic circuit that produces a periodic, oscillating or alternating current (AC) signal, usually a sine wave, square wave or a triangle wave, powered by a direct current (DC) source. Oscillators are found in many electronic devices, such as radio receivers, television sets, radio and television broadcast transmitters, computers, computer peripherals, cellphones, radar, and many other devices.

<span class="mw-page-title-main">Multivibrator</span> Electronic circuit used to implement two-state devices

A multivibrator is an electronic circuit used to implement a variety of simple two-state devices such as relaxation oscillators, timers, latches and flip-flops. The first multivibrator circuit, the astable multivibrator oscillator, was invented by Henri Abraham and Eugene Bloch during World War I. It consisted of two vacuum tube amplifiers cross-coupled by a resistor-capacitor network. They called their circuit a "multivibrator" because its output waveform was rich in harmonics. A variety of active devices can be used to implement multivibrators that produce similar harmonic-rich wave forms; these include transistors, neon lamps, tunnel diodes and others. Although cross-coupled devices are a common form, single-element multivibrator oscillators are also common.

<span class="mw-page-title-main">Operational amplifier</span> High-gain voltage amplifier with a differential input

An operational amplifier is a DC-coupled electronic voltage amplifier with a differential input, a (usually) single-ended output, and an extremely high gain. Its name comes from its original use of performing mathematical operations in analog computers.

<span class="mw-page-title-main">Comparator</span> Device that compares two voltages or currents

In electronics, a comparator is a device that compares two voltages or currents and outputs a digital signal indicating which is larger. It has two analog input terminals and and one binary digital output . The output is ideally

A low-pass filter is a filter that passes signals with a frequency lower than a selected cutoff frequency and attenuates signals with frequencies higher than the cutoff frequency. The exact frequency response of the filter depends on the filter design. The filter is sometimes called a high-cut filter, or treble-cut filter in audio applications. A low-pass filter is the complement of a high-pass filter.

<span class="mw-page-title-main">Negative resistance</span> Property that an increasing voltage results in a decreasing current

In electronics, negative resistance (NR) is a property of some electrical circuits and devices in which an increase in voltage across the device's terminals results in a decrease in electric current through it.

<span class="mw-page-title-main">Schmitt trigger</span> Electronic comparator circuit with hysteresis

In electronics, a Schmitt trigger is a comparator circuit with hysteresis implemented by applying positive feedback to the noninverting input of a comparator or differential amplifier. It is an active circuit which converts an analog input signal to a digital output signal. The circuit is named a trigger because the output retains its value until the input changes sufficiently to trigger a change. In the non-inverting configuration, when the input is higher than a chosen threshold, the output is high. When the input is below a different (lower) chosen threshold the output is low, and when the input is between the two levels the output retains its value. This dual threshold action is called hysteresis and implies that the Schmitt trigger possesses memory and can act as a bistable multivibrator. There is a close relation between the two kinds of circuits: a Schmitt trigger can be converted into a latch and a latch can be converted into a Schmitt trigger.

<span class="mw-page-title-main">Voltage divider</span> Linear circuit that produces an output voltage that is a fraction of its input voltage

In electronics, a voltage divider (also known as a potential divider) is a passive linear circuit that produces an output voltage (Vout) that is a fraction of its input voltage (Vin). Voltage division is the result of distributing the input voltage among the components of the divider. A simple example of a voltage divider is two resistors connected in series, with the input voltage applied across the resistor pair and the output voltage emerging from the connection between them.

<span class="mw-page-title-main">555 timer IC</span> Integrated circuit used for timer applications

The 555 timer IC is an integrated circuit used in a variety of timer, delay, pulse generation, and oscillator applications. It is one of the most popular timing ICs due to its flexibility and price. Derivatives provide two or four timing circuits in one package. The design was first marketed in 1972 by Signetics and used bipolar junction transistors. Since then, numerous companies have made the original timers and later similar low-power CMOS timers. In 2017, it was said that over a billion 555 timers are produced annually by some estimates, and that the design was "probably the most popular integrated circuit ever made".

A Colpitts oscillator, invented in 1918 by Canadian-American engineer Edwin H. Colpitts using vacuum tubes, is one of a number of designs for LC oscillators, electronic oscillators that use a combination of inductors (L) and capacitors (C) to produce an oscillation at a certain frequency. The distinguishing feature of the Colpitts oscillator is that the feedback for the active device is taken from a voltage divider made of two capacitors in series across the inductor.

Linear electronic oscillator circuits, which generate a sinusoidal output signal, are composed of an amplifier and a frequency selective element, a filter. A linear oscillator circuit which uses an RC network, a combination of resistors and capacitors, for its frequency selective part is called an RC oscillator.

<span class="mw-page-title-main">Low-dropout regulator</span> DC linear voltage regulator

A low-dropout regulator is a DC linear voltage regulator that can operate even when the supply voltage is very close to the output voltage. The advantages of an LDO regulator over other DC-to-DC voltage regulators include: the absence of switching noise ; smaller device size ; and greater design simplicity. The disadvantage is that linear DC regulators must dissipate heat in order to operate.

This article illustrates some typical operational amplifier applications. A non-ideal operational amplifier's equivalent circuit has a finite input impedance, a non-zero output impedance, and a finite gain. A real op-amp has a number of non-ideal features as shown in the diagram, but here a simplified schematic notation is used, many details such as device selection and power supply connections are not shown. Operational amplifiers are optimised for use with negative feedback, and this article discusses only negative-feedback applications. When positive feedback is required, a comparator is usually more appropriate. See Comparator applications for further information.

An avalanche transistor is a bipolar junction transistor designed for operation in the region of its collector-current/collector-to-emitter voltage characteristics beyond the collector-to-emitter breakdown voltage, called avalanche breakdown region. This region is characterized by avalanche breakdown, which is a phenomenon similar to Townsend discharge for gases, and negative differential resistance. Operation in the avalanche breakdown region is called avalanche-mode operation: it gives avalanche transistors the ability to switch very high currents with less than a nanosecond rise and fall times. Transistors not specifically designed for the purpose can have reasonably consistent avalanche properties; for example 82% of samples of the 15V high-speed switch 2N2369, manufactured over a 12-year period, were capable of generating avalanche breakdown pulses with rise time of 350 ps or less, using a 90V power supply as Jim Williams writes.

<span class="mw-page-title-main">Pearson–Anson effect</span>

The Pearson–Anson effect, discovered in 1922 by Stephen Oswald Pearson and Horatio Saint George Anson, is the phenomenon of an oscillating electric voltage produced by a neon bulb connected across a capacitor, when a direct current is applied through a resistor. This circuit, now called the Pearson-Anson oscillator, neon lamp oscillator, or sawtooth oscillator, is one of the simplest types of relaxation oscillator. It generates a sawtooth output waveform. It has been used in low frequency applications such as blinking warning lights, stroboscopes, tone generators in electronic organs and other electronic music circuits, and in time bases and deflection circuits of early cathode-ray tube oscilloscopes. Since the development of microelectronics, these simple negative resistance oscillators have been superseded in many applications by more flexible semiconductor relaxation oscillators such as the 555 timer IC.

A phase-shift oscillator is a linear electronic oscillator circuit that produces a sine wave output. It consists of an inverting amplifier element such as a transistor or op amp with its output fed back to its input through a phase-shift network consisting of resistors and capacitors in a ladder network. The feedback network 'shifts' the phase of the amplifier output by 180 degrees at the oscillation frequency to give positive feedback. Phase-shift oscillators are often used at audio frequency as audio oscillators.

In electronics, a differentiator is a circuit that outputs a signal approximately proportional to the rate of change of its input signal. Because the derivative of a sinusoid in another sinusoid whose amplitude is multiplied by its frequency, a true differentiator that works across all frequencies can't be realized. Real circuits such as a 1st-order high-pass filter are able to approximate differentiation at lower frequencies by limiting the gain above its cutoff frequency. An active differentiator includes an amplifier, while a passive differentiator is made only of resistors, capacitors and inductors.

A log amplifier, also known as logarithmic amplifier or logarithm amplifier or log amp, is an amplifier for which the output voltage Vout is K times the natural log of the input voltage Vin. This can be expressed as,

An integrating ADC is a type of analog-to-digital converter that converts an unknown input voltage into a digital representation through the use of an integrator. In its basic implementation, the dual-slope converter, the unknown input voltage is applied to the input of the integrator and allowed to ramp for a fixed time period. Then a known reference voltage of opposite polarity is applied to the integrator and is allowed to ramp until the integrator output returns to zero. The input voltage is computed as a function of the reference voltage, the constant run-up time period, and the measured run-down time period. The run-down time measurement is usually made in units of the converter's clock, so longer integration times allow for higher resolutions. Likewise, the speed of the converter can be improved by sacrificing resolution.

A comparator is an electronic component that compares two input voltages. Comparators are closely related to operational amplifiers, but a comparator is designed to operate with positive feedback and with its output saturated at one power rail or the other. If necessary, an op-amp can be pressed into service as a poorly performing comparator, but its slew Rate will be impaired.

References

  1. Graf, Rudolf F. (1999). Modern Dictionary of Electronics. Newnes. p. 638. ISBN   0750698667.
  2. 1 2 3 4 Edson, William A. (1953). Vacuum Tube Oscillators (PDF). New York: John Wiley and Sons. p. 3. on Peter Millet's Tubebooks website
  3. Morris, Christopher G. Morris (1992). Academic Press Dictionary of Science and Technology. Gulf Professional Publishing. p. 1829. ISBN   0122004000.
  4. 1 2 3 Du, Ke-Lin; M. N. S. Swamy (2010). Wireless Communication Systems: From RF Subsystems to 4G Enabling Technologies. Cambridge Univ. Press. p. 443. ISBN   978-1139485760.
  5. Varigonda, Subbarao; Tryphon T. Georgiou (January 2001). "Dynamics of Relay Relaxation Oscillators" (PDF). IEEE Transactions on Automatic Control. 46 (1). Inst. of Electrical and Electronic Engineers: 65. doi:10.1109/9.898696 . Retrieved February 22, 2014.
  6. Nave, Carl R. (2014). "Relaxation Oscillator Concept". HyperPhysics . Dept. of Physics and Astronomy, Georgia State Univ. Retrieved February 22, 2014.{{cite web}}: External link in |work= (help)
  7. Oliveira, Luis B.; et al. (2008). Analysis and Design of Quadrature Oscillators. Springer. p. 24. ISBN   978-1402085161.
  8. DeLiang, Wang (1999). "Relaxation oscillators and networks" (PDF). Wiley Encyclopedia of Electrical and Electronics Engineering, Vol. 18. Wiley & Sons. pp. 396–405. Retrieved February 2, 2014.
  9. 1 2 3 Sauro, Herbert M. (2009). "Oscillatory Circuits" (PDF). Class notes on oscillators: Systems and Synthetic Biology. Sauro Lab, Center for Synthetic Biology, University of Washington. Retrieved November 12, 2019.,
  10. Letellier, Christopher (2013). Chaos in Nature. World Scientific. pp. 132–133. ISBN   978-9814374422.
  11. 1 2 3 4 5 Ginoux, Jean-Marc; Letellier, Christophe (June 2012). "Van der Pol and the history of relaxation oscillations: toward the emergence of a concept". Chaos. 22 (2): 023120. arXiv: 1408.4890 . Bibcode:2012Chaos..22b3120G. doi:10.1063/1.3670008. PMID   22757527. S2CID   293369 . Retrieved December 24, 2014.
  12. 1 2 3 Enns, Richard H.; George C. McGuire (2001). Nonlinear Physics with Mathematica for Scientists and Engineers. Springer. p. 277. ISBN   0817642234.
  13. 1 2 3 Pippard, A. B. (2007). The Physics of Vibration. Cambridge Univ. Press. pp. 359–361. ISBN   978-0521033336.
  14. 1 2 3 Pippard, The Physics of Vibration, p. 41-42
  15. Kinoshita, Shuichi (2013). "Introduction to Nonequilibrium Phenomena". Pattern Formations and Oscillatory Phenomena. Newnes. p. 17. ISBN   978-0123972996 . Retrieved February 24, 2014.
  16. see Ch. 9, "Limit cycles and relaxation oscillations" in Leigh, James R. (1983). Essentials of Nonlinear Control Theory. Institute of Electrical Engineers. pp. 66–70. ISBN   0906048966.
  17. Abraham, H.; E. Bloch (1919). "Mesure en valeur absolue des périodes des oscillations électriques de haute fréquence (Measurement of the periods of high frequency electrical oscillations)" (PDF). Annales de Physique. 9 (1). Paris: Société Française de Physique: 237–302. doi:10.1051/jphystap:019190090021100.
  18. 1 2 Ginoux, Jean-Marc (2012). "Van der Pol and the history of relaxation oscillations: Toward the emergence of a concepts". Chaos: An Interdisciplinary Journal of Nonlinear Science. 22 (2). Chaos 22 (2012) 023120: 023120. arXiv: 1408.4890 . Bibcode:2012Chaos..22b3120G. doi:10.1063/1.3670008. PMID   22757527. S2CID   293369.
  19. van der Pol, B. (1920). "A theory of the amplitude of free and forced triode vibrations". Radio Review. 1: 701–710, 754–762.
  20. van der Pol, Balthasar (1926). "On Relaxation-Oscillations". The London, Edinburgh, and Dublin Philosophical Magazine 2. 2: 978–992. doi:10.1080/14786442608564127.
  21. Shukla, Jai Karan N. (1965). "Discontinuous Theory of Relaxation Oscillators". Master of Science thesis. Dept. of Electrical Engineering, Kansas State Univ. Retrieved February 23, 2014.{{cite journal}}: Cite journal requires |journal= (help)
  22. 1 2 3 Puckle, O. S. (1951). Time Bases (Scanning Generators), 2nd Ed. London: Chapman and Hall, Ltd. pp.  15–27.
  23. 1 2 3 4 Abidi, Assad A.; Robert J. Meyer (1996). "Noise in Relaxation Oscillators". Monolithic Phase-Locked Loops and Clock Recovery Circuits: Theory and Design. John Wiley and Sons. p. 182. ISBN   9780780311497 . Retrieved 2015-09-22.
  24. 1 2 van der Tang, J.; Kasperkovitz, Dieter; van Roermund, Arthur H.M. (2006). High-Frequency Oscillator Design for Integrated Transceivers. Springer. p. 12. ISBN   0306487160.
  25. "Shaw Communications".