Relay network

Last updated

A relay network is a broad class of network topology commonly used in wireless networks, where the source and destination are interconnected by means of some nodes. In such a network the source and destination cannot communicate to each other directly because the distance between the source and destination is greater than the transmission range of both of them, hence the need for intermediate node(s) to relay.

Contents

A relay network is a type of network used to send information between two devices, for e.g. server and computer, that are too far away to send the information to each other directly. Thus the network must send or "relay" the information to different devices, referred to as nodes, that pass on the information to its destination. A well-known example of a relay network is the Internet. A user can view a web page from a server halfway around the world by sending and receiving the information through a series of connected nodes.

In many ways, a relay network resembles a chain of people standing together. One person has a note he needs to pass to the girl at the end of the line. He is the sender, she is the recipient, and the people in between them are the messengers, or the nodes. He passes the message to the first node, or person, who passes it to the second and so on until it reaches the girl and she reads it.

The people might stand in a circle, however, instead of a line. Each person is close enough to reach the person on either side of him and across from him. Together the people represent a network and several messages can now pass around or through the network in different directions at once, as opposed to the straight line that could only run messages in a specific direction. This concept, the way a network is laid out and how it shares data, is known as network topology. Relay networks can use many different topologies, from a line to a ring to a tree shape, to pass along information in the fastest and most efficient way possible.

Often the relay network is complex and branches off in multiple directions to connect many servers and computers. Where two lines from two different computers or servers meet forms the nodes of the relay network. Two computer lines might run into the same router, for example, making this the node.

Wireless networks also take advantage of the relay network system. A laptop, for example, might connect to a wireless network which sends and receives information through another network and another until it reaches its destination. Even though not all parts of the network have physical wires, they still connect to other devices that function as the nodes.

This type of network holds several advantages. Information can travel long distances, even if the sender and receiver are far apart. It also speeds up data transmission by choosing the best path to travel between nodes to the receiver's computer. If one node is too busy, the information is simply routed to a different one. Without relay networks, sending an email from one computer to another would require the two computers be hooked directly together before it could work.

Neural Networks

An array of adaptive units receives its input signals through a relaying network. [1]

Examples

The TOR Network is an example of a relay network as data transfer on the TOR network takes place over the TOR relay such that the data is transmitted over multiple relay nodes before it reaches the client node.

Related Research Articles

Routing is the process of selecting a path for traffic in a network or between or across multiple networks. Broadly, routing is performed in many types of networks, including circuit-switched networks, such as the public switched telephone network (PSTN), and computer networks, such as the Internet.

The Simple Mail Transfer Protocol (SMTP) is an internet standard communication protocol for electronic mail transmission. Mail servers and other message transfer agents use SMTP to send and receive mail messages. User-level email clients typically use SMTP only for sending messages to a mail server for relaying, and typically submit outgoing email to the mail server on port 587 or 465 per RFC 8314. For retrieving messages, IMAP is standard, but proprietary servers also often implement proprietary protocols, e.g., Exchange ActiveSync.

The Transmission Control Protocol (TCP) is one of the main protocols of the Internet protocol suite. It originated in the initial network implementation in which it complemented the Internet Protocol (IP). Therefore, the entire suite is commonly referred to as TCP/IP. TCP provides reliable, ordered, and error-checked delivery of a stream of octets (bytes) between applications running on hosts communicating via an IP network. Major internet applications such as the World Wide Web, email, remote administration, and file transfer rely on TCP, which is part of the Transport Layer of the TCP/IP suite. SSL/TLS often runs on top of TCP.

Network topology Arrangement of the elements of a communication network

Network topology is the arrangement of the elements of a communication network. Network topology can be used to define or describe the arrangement of various types of telecommunication networks, including command and control radio networks, industrial fieldbusses and computer networks.

Telecommunications network Network for communications over distance

A telecommunications network is a group of nodes interconnected by telecommunications links that are used to exchange messages between the nodes. The links may use a variety of technologies based on the methodologies of circuit switching, message switching, or packet switching, to pass messages and signals.

Communication channel Physical or logical connection used for transmission of information

A communication channel refers either to a physical transmission medium such as a wire, or to a logical connection over a multiplexed medium such as a radio channel in telecommunications and computer networking. A channel is used to convey an information signal, for example a digital bit stream, from one or several senders to one or several receivers. A channel has a certain capacity for transmitting information, often measured by its bandwidth in Hz or its data rate in bits per second.

Two-way communication is a form of transmission in which both parties involved transmit information. Two-way communication has also been referred to as interpersonal communication. Common forms of two-way communication are:

In telecommunications, a point-to-point connection refers to a communications connection between two communication endpoints or nodes. An example is a telephone call, in which one telephone is connected with one other, and what is said by one caller can only be heard by the other. This is contrasted with a point-to-multipoint or broadcast connection, in which many nodes can receive information transmitted by one node. Other examples of point-to-point communications links are leased lines and microwave radio relay.

Onion routing Technique for anonymous communication over a computer network

Onion routing is a technique for anonymous communication over a computer network. In an onion network, messages are encapsulated in layers of encryption, analogous to layers of an onion. The encrypted data is transmitted through a series of network nodes called onion routers, each of which "peels" away a single layer, uncovering the data's next destination. When the final layer is decrypted, the message arrives at its destination. The sender remains anonymous because each intermediary knows only the location of the immediately preceding and following nodes. While onion routing provides a high level of security and anonymity, there are methods to break the anonymity of this technique, such as timing analysis.

Store and forward is a telecommunications technique in which information is sent to an intermediate station where it is kept and sent at a later time to the final destination or to another intermediate station. The intermediate station, or node in a networking context, verifies the integrity of the message before forwarding it. In general, this technique is used in networks with intermittent connectivity, especially in the wilderness or environments requiring high mobility. It may also be preferable in situations when there are long delays in transmission and variable and high error rates, or if a direct, end-to-end connection is not available.

Mesh networking Network with multiple links between nodes

A mesh network is a local network topology in which the infrastructure nodes connect directly, dynamically and non-hierarchically to as many other nodes as possible and cooperate with one another to efficiently route data to and from clients.

In data communications, flow control is the process of managing the rate of data transmission between two nodes to prevent a fast sender from overwhelming a slow receiver. It provides a mechanism for the receiver to control the transmission speed, so that the receiving node is not overwhelmed with data from transmitting node. Flow control should be distinguished from congestion control, which is used for controlling the flow of data when congestion has actually occurred. Flow control mechanisms can be classified by whether or not the receiving node sends feedback to the sending node.

Networking hardware, also known as network equipment or computer networking devices, are electronic devices which are required for communication and interaction between devices on a computer network. Specifically, they mediate data transmission in a computer network. Units which are the last receiver or generate data are called hosts, end systems or data terminal equipment.

Broadcasting (networking) Network messaging to multiple recipients simultaneously

In computer networking, telecommunication and information theory, broadcasting is a method of transferring a message to all recipients simultaneously. Broadcasting can be performed as a high-level operation in a program, for example, broadcasting in Message Passing Interface, or it may be a low-level networking operation, for example broadcasting on Ethernet.

Flooding (computer networking) Simple routing algorithm sending incoming packets to all other links than the sender

Flooding is used in computer networks routing algorithm in which every incoming packet is sent through every outgoing link except the one it arrived on.

Computer network Network that allows computers to share resources and communicate with each other

A computer network is a set of computers sharing resources located on or provided by network nodes. The computers use common communication protocols over digital interconnections to communicate with each other. These interconnections are made up of telecommunication network technologies, based on physically wired, optical, and wireless radio-frequency methods that may be arranged in a variety of network topologies.

B.A.T.M.A.N. Routing protocol for multi-hop mobile ad hoc networks

The Better Approach to Mobile Ad-hoc Networking (B.A.T.M.A.N.) is a routing protocol for multi-hop mobile ad hoc networks which is under development by the German "Freifunk" community and intended to replace the Optimized Link State Routing Protocol (OLSR).

In computing, Microsoft's Windows Vista and Windows Server 2008 introduced in 2007/2008 a new networking stack named Next Generation TCP/IP stack, to improve on the previous stack in several ways. The stack includes native implementation of IPv6, as well as a complete overhaul of IPv4. The new TCP/IP stack uses a new method to store configuration settings that enables more dynamic control and does not require a computer restart after a change in settings. The new stack, implemented as a dual-stack model, depends on a strong host-model and features an infrastructure to enable more modular components that one can dynamically insert and remove.

The network interface layer, also commonly referred to as the data link layer or link layer, is the lowest layer in the TCP/IP model. This particular layer has several unique security vulnerabilities that can be exploited by a determined adversary.

A wireless onion router is a router that uses Tor to connect securely to a network. The onion router allows the user to connect to the internet anonymously creating an anonymous connection. Tor works using an overlaid network which is free throughout the world, this overlay network is created by using numerous relay points created using volunteer which helps the user hide personal information behind layers of encrypted data like layers of an onion. Routers are being created using Raspberry Pi adding a wireless module or using its own inbuilt wireless module in the later versions.

References

  1. Kohonen, Teuvo (1984). Self-Organization and Associative Memory. Springer-Verlag. pp. 133–139. ISBN   3-540-12165-X.