Rhizopus microsporus

Last updated

Rhizopus microsporus
Rhizopus microsporus.png
Rhizopus microsporus sporangium containing sporangiospores
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Fungi
Division: Mucoromycota
Order: Mucorales
Family: Mucoraceae
Genus: Rhizopus
Species:
R. microsporus
Binomial name
Rhizopus microsporus
Tiegh. (1875)
Synonyms
  • Mucor microsporus(Tiegh.) Mig. (1910)
  • Rhizopus microsporusTiegh. (1875)

Rhizopus microsporus is a fungal plant pathogen infecting maize, sunflower, and rice.

Contents

A domesticated variant of this species is used in the preparation of traditional soy fermentation such as tempeh and sufu (see Rhizopus oligosporus ).

It can also cause a nosocomial infection and necrosis to the infected area, particularly prevalent in pre-term infants. This fungus contains the bacterial endosymbiont Paraburkholderia rhizoxinica that produces the antitumor drug rhizoxin. [1]

Hosts and symptoms

Certain strains of Rhizopus microsporus use agricultural rice as a host, causing the disease Rice Seedling Blight. This infection is first observed by the fast swelling of seedling roots, but displays no further signs of infection. The main causal agent of Rice Seedling Blight is attributed to the endosymbiotic relationship with Paraburkholderia sp. The production of rhizoxin by the bacteria inhibits the ability of rice plant cells to perform mitosis, dramatically weakening or outright killing young rice seedlings. [2] The killing of the plant cells is beneficial to both the bacteria and the fungal host, as the two live as necrotrophic pathogens. [3]

Rhizopus microsporus is similarly one of three common Rhizopus species to cause the disease Rhizopus Head Rot in confectionery sunflower species. Alongside R. oryzae, R. microsporus causes the premier head rot of sunflower in South Africa. Susceptibility to disease changes throughout the age of the host. Heads inoculated at the budding stage simply do not become infected. However, when inoculated at the anthesis stage, loss was relatively high. Yield was not reduced significantly when heads were inoculated at the seed development stage. [4]

The initial symptoms appear as small, dispersed water-soaked spots on the back of the sunflower head. As the spots expand, mycelial growth expands into parenchyma cells, further killing cells within the head. Later stages of disease have external masses of mycelium among clumps of black sporangia, dispersing spores abiotically, and by birds. The diseased heads can completely rot in 3 to 7 days. [5]

Rhizopus microsporus has been found to be the species involved in Rhizopus Ear Rot of maize as well. This is characterized by small spotted sporangia structures, mycelium growth on the ear, and eventual ear and grain rot. [6]

Disease cycle

The life cycle of R. microsporus is quite similar to the general life cycles of common Rhizopus species. The primary feature as a plant pathogen is the intake of resources from a plant host. The initial infection occurs from asexual spores overwintered in plant debris. These spores infect the host where susceptibility is best, such as young roots of rice seedlings, or the mature sunflower head. [5] Once infected, the production of hyphae and mycelium continue to spread the infection, creating sporangia as a secondary cycle. The resources gathered are a result of the symbiotic relationship with Paraburkholderia species, allowing for rhizoxin production to kill plant cells. [2]

A sexual stage is present, in the same fashion as most zygomycetes, with fused hyphae of alternate mating types producing a zygospore.

There is an upcoming theory that suggests that a portion of the R. microsporus reproductive cycle is replaced when put in symbiosis with the rhizoxin producing bacteria. [7]

Environment

This fungus is most commonly found in soil, plant debris, and foodstuffs. [8] It is a pathogen of many crops and therefore is found in many diverse environments. R. microsporus is generally found in soils with a neutral pH. These soil levels usually have lower salinity for optimum growth conditions. The growth range of R. microsporus ranges from 25°C to 55°C with an optimal temperature of 28°C. [9] Its primary host is rice and it is also commonly found in maize and sunflowers. R. microsporus causes disease in humans, one of its alternative hosts, causing infections of the lungs. In one rare case it was found tainting hospital linens in Hong Kong leading to a scare that brought the disease into the forefront of mainstream media. [10]

Management

The management of R. microsporus can be either complete sterilization, antifungal use, or the blocking of sporulation so it cannot spread. This fungal-bacterial symbiont is classified as a biosafety level 2 organism. A common method of sterilization is getting rid of all of the reproductive structures of the fungus. More difficult sterilizations oftentimes requires control agents such as antifungals are employed. However, R. microsporus is also naturally resistant to fluconazole, ketoconazole, voriconazole and the echinocandins. Antifungal prescription drugs that usually will control R. microsporus are amphotericin B and triazoles such as posaconazole, it's also occasionally susceptible to itraconazole. [11]

Another way to control this pathogen would be to eliminate its bacterial endosymbiont; without this endosymbiont the fungus is unable to sporulate. [2] The bacterium has a type III secretion system that allows it to communicate with its fungal host, and without the bacteria's secretion system, the fungi could not produce spores. [12] This bacterium is passed on vertically from fungus to fungus through the sporangia while these spores are germinating. Without the bacteria none of the reproductive structures can be created by the fungus. [13]

Preventative measures can be taken to prevent an R. microsporus infection. This includes removing potential hosts not part of the system (such as wild sunflowers) that may host pests and pathogens, controlling bird feeding, and avoiding mechanical damage to the plant after its flowering. [14]

Importance

Rhizopus microsporus causes rice seedling blight and is a severe crop disease in Asia. [15] In addition, R. microsporus significantly affects sunflower yield in terms of both (oil) quality and quantity. The free fatty acid content of sunflower oil increases from 0.8% to 19.4%. Diseased sunflower plants also yielded only 81% as much seed and 55% as much oil. [16]

Rhizopus microsporus is also one of very few fungi that harbors bacterial endosymbionts to control its production of toxins. [8] Understanding the evolutionary association between R. microsporus and B. rhizoxinica and how the symbiosis is maintained has been an area of interest. [3] [12] In all cases, it is obvious that the fungus profits from the biosynthetic capabilities of the endosymbiont in order to access nutrient sources. Yet, the advantage for the bacterial symbiont is not evident. [2]

Sporulation does not occur without the presence of both B. rhizoxinica and R. microsporus. [3] The T3SS involved in this relationship is the first report on a T3SS involved in bacterial–fungal symbiosis. [12] Phylogenetic analysis revealed that the T3SS represents a prototype of a clade of uncharacterized T3SSs within the hrp superfamily of T3SSs from plant pathogenic microorganisms. [12]

Pathogenesis

Rhizopus microsporus lives as a necrotroph where both the fungus (Rhizopus microsporus) and its harbored endobacteria ( Paraburkholderia rhizoxinica ) form a symbiotic relationship. In order to kill the living cells of its host, the harbored endobacteria secrete rhizoxin, a toxin that inhibits cell mitosis and vegetative production. [13] R. microsporus has developed a resistance to the toxin due to an amino acid exchange in the β-tubulin protein. [2] The resulting necrosis of the plant tissue replenishes nutrients to both the fungus and the bacteria by feeding on the decaying matter. [2]

The virulence factor in all known cases are biosynthesized by the pathogenic fungus. In this case of the symbiosis between R. microsporus and B. rhizoxinica, the hosted bacteria population produces the causative agent of rice seedling blight. [2] Toxin formation by the bacteria has been demonstrated in analogy with Koch's postulates through the discovery that rhizoxin-producing strains of R. microsporus contained symbionts. [3] Removal of the symbionts from the host degraded rhizoxin production and the symbionts were then grown in pure culture. Lastly, the re-introduction of the bacteria grown in pure culture back into the host reestablished rhizoxin production. [2]

The maintenance of the symbiosis is crucial for sporulation to occur. [12] The endofungal bacteria possess a type III secretion system (T3SS) in order to achieve symbiosis. [12] Mutants defective in the T3SS mechanism show reduced intracellular survival and no sporulation. [12] This T3SS is a pathogenicity factor that is required by the pathogen in order to cause disease.

Related Research Articles

<span class="mw-page-title-main">Endosymbiont</span> Organism that lives within the body or cells of another organism

An endosymbiont or endobiont is any organism that lives within the body or cells of another organism most often, though not always, in a mutualistic relationship. (The term endosymbiosis is from the Greek: ἔνδον endon "within", σύν syn "together" and βίωσις biosis "living".) Examples are nitrogen-fixing bacteria, which live in the root nodules of legumes, single-cell algae inside reef-building corals and bacterial endosymbionts that provide essential nutrients to insects.

<span class="mw-page-title-main">Endophyte</span>

An endophyte is an endosymbiont, often a bacterium or fungus, that lives within a plant for at least part of its life cycle without causing apparent disease. Endophytes are ubiquitous and have been found in all species of plants studied to date; however, most of the endophyte/plant relationships are not well understood. Some endophytes may enhance host growth, nutrient acquisition and improve the plant's ability to tolerate abiotic stresses, such as drought and decrease biotic stresses by enhancing plant resistance to insects, pathogens and herbivores. Although endophytic bacteria and fungi are frequently studied, endophytic archaea are increasingly being considered for their role in plant growth promotion as part of the core microbiome of a plant.

<i>Spiroplasma</i> Genus of bacteria

Spiroplasma is a genus of Mollicutes, a group of small bacteria without cell walls. Spiroplasma shares the simple metabolism, parasitic lifestyle, fried-egg colony morphology and small genome of other Mollicutes, but has a distinctive helical morphology, unlike Mycoplasma. It has a spiral shape and moves in a corkscrew motion. Many Spiroplasma are found either in the gut or haemolymph of insects where they can act to manipulate host reproduction, or defend the host as endosymbionts. Spiroplasma are also disease-causing agents in the phloem of plants. Spiroplasmas are fastidious organisms, which require a rich culture medium. Typically they grow well at 30 °C, but not at 37 °C. A few species, notably Spiroplasma mirum, grow well at 37 °C, and cause cataracts and neurological damage in suckling mice. The best studied species of spiroplasmas are Spiroplasma poulsonii, a reproductive manipulator and defensive insect symbiont, Spiroplasma citri, the causative agent of citrus stubborn disease, and Spiroplasma kunkelii, the causative agent of corn stunt disease.

<i>Rhizopus oligosporus</i> Species of fungus

Rhizopus oligosporus is a fungus of the family Mucoraceae and is a widely used starter culture for the production of tempeh at home and industrially. As the mold grows it produces fluffy, white mycelia, binding the beans together to create an edible "cake" of partly catabolized soybeans. The domestication of the microbe is thought to have occurred in Indonesia several centuries ago.

Rhizopus arrhizus is a fungus of the family Mucoraceae, characterized by sporangiophores that arise from nodes at the point where the rhizoids are formed and by a hemispherical columella. It is the most common cause of mucormycosis in humans and occasionally infects other animals.

<span class="mw-page-title-main">Rhizoxin</span> Chemical compound

Rhizoxin is an antimitotic agent with anti-tumor activity. It is isolated from a pathogenic plant fungus which causes rice seedling blight.

<i>Macrophomina phaseolina</i> Species of fungus

Macrophomina phaseolina is a Botryosphaeriaceae plant pathogen fungus that causes damping off, seedling blight, collar rot, stem rot, charcoal rot, basal stem rot, and root rot on many plant species.

Pythium aphanidermatum is a soil borne plant pathogen. Pythium is a genus in the class Oomycetes, which are also known as water molds. Oomycetes are not true fungi, as their cell walls are made of cellulose instead of chitin, they are diploid in their vegetative state, and they form coenocytic hyphae. Also, they reproduce asexually with motile biflagelette zoospores that require water to move towards and infect a host. Sexually, they reproduce with structures called antheridia, oogonia, and oospores.

<i>Bremia lactucae</i> Species of single-celled organism

Bremia lactucae is a plant pathogen. This microorganism causes a disease of lettuce denominated as downy mildew. Some other strains can be found on 36 genera of Asteraceae including Senecio and Sonchus. Experiments using sporangia from hosts do not infect lettuce and it is concluded that the fungus exists as a quantity of host-specific strains. Wild species, such as Lactuca serriola, or varieties of Lactuca can hold strains that infect lettuce, but these pathogens are not sufficiently common to seriously infect the plant.

Alternaria helianthi is a fungal plant pathogen causing a disease in sunflowers known as Alternaria blight of sunflower.

Rhizopus soft rot is a disease of the sweet potato. It is one of the most common to affect the sweet potato, happening during packing and shipping. The disease causes a watery soft rot of the internal portion of the storage root. Strategies to manage the disease include the development of resistant varieties, curing through the use of heat and humidity, and application of decay control products.

In biology, a pathogen, in the oldest and broadest sense, is any organism or agent that can produce disease. A pathogen may also be referred to as an infectious agent, or simply a germ.

Paraburkholderia endofungorum is a gram-negative, catalase and oxidase-positive, motile bacterium which is able to grow under aerobic and microaerophilic conditions without a CO2 atmosphere, from the genus Paraburkholderia and the family Burkholderiaceae.

Paraburkholderia rhizoxinica is a gram-negative, oxidase and catalase-positive, motile bacterium from the genus Paraburkholderia and the family Burkholderiaceae which was isolated from the plant pathogenic fungus, Rhizopus microsporus. The complete genome of Paraburkholderia rhizoxinica is sequenced.

Fungal-bacterial endosymbiosis encompasses the mutualistic relationship between a fungus and intracellular bacteria species residing within the fungus. Many examples of endosymbiotic relationships between bacteria and plants, algae and insects exist and have been well characterized, however fungal-bacteria endosymbiosis has been less well described.

Transcription Activator-Like Effector-Likes (TALE-likes) are a group of bacterial DNA binding proteins named for the first and still best-studied group, the TALEs of Xanthomonas bacteria. TALEs are important factors in the plant diseases caused by Xanthomonas bacteria, but are known primarily for their role in biotechnology as programmable DNA binding proteins, particularly in the context of TALE nucleases. TALE-likes have additionally been found in many strains of the Ralstonia solanacearum bacterial species complex, in Paraburkholderia rhizoxinica strain HKI 454, and in two unknown marine bacteria. Whether or not all these proteins form a single phylogenetic grouping is as yet unclear.

<i>Rhizopus oryzae</i> Species of fungus

Rhizopus oryzae is a filamentous heterothallic microfungus that occurs as a saprotroph in soil, dung, and rotting vegetation. This species is very similar to Rhizopus stolonifer, but it can be distinguished by its smaller sporangia and air-dispersed sporangiospores. It differs from R. oligosporus and R. microsporus by its larger columellae and sporangiospores. The many strains of R. oryzae produce a wide range of enzymes such as carbohydrate digesting enzymes and polymers along with a number of organic acids, ethanol and esters giving it useful properties within the food industries, bio-diesel production, and pharmaceutical industries. It is also an opportunistic pathogen of humans causing mucormycosis.

<i>Rhizopus stolonifer</i> Species of fungus

Rhizopus stolonifer is commonly known as black bread mold. It is a member of Zygomycota and considered the most important species in the genus Rhizopus. It is one of the most common fungi in the world and has a global distribution although it is most commonly found in tropical and subtropical regions. It is a common agent of decomposition of stored foods. Like other members of the genus Rhizopus, R. stolonifer grows rapidly, mostly in indoor environments.

Hemibiotrophs are the spectrum of plant pathogens, including bacteria, oomycete and a group of plant pathogenic fungi that keep its host alive while establishing itself within the host tissue, taking up the nutrients with brief biotrophic-like phase. It then, in later stages of infection switches to a necrotrophic life-style, where it rampantly kills the host cells, deriving its nutrients from the dead tissues.

<span class="mw-page-title-main">Symbiosis in Amoebozoa</span>

Amoebozoa of the free living genus Acanthamoeba and the social amoeba genus Dictyostelium are single celled eukaryotic organisms that feed on bacteria, fungi, and algae through phagocytosis, with digestion occurring in phagolysosomes. Amoebozoa are present in most terrestrial ecosystems including soil and freshwater. Amoebozoa contain a vast array of symbionts that range from transient to permanent infections, confer a range of effects from mutualistic to pathogenic, and can act as environmental reservoirs for animal pathogenic bacteria. As single celled phagocytic organisms, amoebas simulate the function and environment of immune cells like macrophages, and as such their interactions with bacteria and other microbes are of great importance in understanding functions of the human immune system, as well as understanding how microbiomes can originate in eukaryotic organisms.

References

  1. "Organism Overview: Burkholderia rhizoxinica". National Center for Biotechnology Information. Retrieved 2014-11-18.
  2. 1 2 3 4 5 6 7 8 Partida-Martinez, Laila P.; Hertweck, Christian (2005-10-06). "Pathogenic fungus harbours endosymbiotic bacteria for toxin production". Nature. 437 (7060): 884–888. Bibcode:2005Natur.437..884P. doi:10.1038/nature03997. ISSN   0028-0836. PMID   16208371. S2CID   4416437.
  3. 1 2 3 4 Lackner, Gerald; Hertweck, Christian (2011-06-01). "Impact of Endofungal Bacteria on Infection Biology, Food Safety, and Drug Development". PLOS Pathogens. 7 (6): e1002096. doi: 10.1371/journal.ppat.1002096 . ISSN   1553-7366. PMC   3128126 . PMID   21738468.
  4. Shtienberg, D. (20 Feb 2007). "Rhizopus Head Rot of Confectionery Sunflower: Effects on Yield Quantity and Quality and Implications for Disease Management". Phytopathology. 87 (12): 1226–1232. doi:10.1094/PHYTO.1997.87.12.1226. PMID   18945022.
  5. 1 2 Shtienberg, D. (1997). "Rhizopus Head Rot of Confectionery Sunflower: Effects on Yield Quantity and Quality and Implications for Disease Management". Phytopathology. 87 (12): 1226–1232. doi:10.1094/phyto.1997.87.12.1226. PMID   18945022.
  6. Williams, R.J. (1983). "Grain Molds in the Tropics: Problems and Importance" (PDF). Annual Review of Phytopathology. 21: 153–178. doi:10.1146/annurev.py.21.090183.001101.
  7. Jennessen, Jennifer; Nielsen, Kristian Fog; Houbraken, Jos; Lyhne, Ellen Kirstine; Schnürer, Johan; Frisvad, Jens Christian; Samson, Robert A. (2005-02-12). "Secondary Metabolite and Mycotoxin Production by the Rhizopus microsporus Group". Journal of Agricultural and Food Chemistry. 53 (5): 1833–1840. doi:10.1021/jf048147n. PMID   15740082.
  8. 1 2 "Rhizopus Microsporus var. Microsporus". Joint Genome Institute.
  9. Fernández-Pérez, Rocío; Díez, Lorena; González-Lázaro, Miriam; Zarazaga, Myriam; Torres, Carmen; Tenorio, Carmen; Kuipers, O. P.; Ruiz-Larrea, Fernanda (2014-05-22). Industrial, medical and environmental applications of microorganisms. Wageningen Academic Publishers. doi:10.3920/978-90-8686-795-0. hdl:10261/149561. ISBN   978-90-8686-243-6.
  10. Zeng, Vivienne (2015-07-21). "Bedding, clothes recalled at 15 health facilities after fungus linked to two deaths". Hong Kong Free Press. Retrieved 2015-10-21.
  11. "Life". www.life-worldwide.org. Retrieved 2015-10-21.
  12. 1 2 3 4 5 6 7 Lackner, Gerald; Moebius, Nadine; Hertweck, Christian (2011-02-01). "Endofungal bacterium controls its host by an hrp type III secretion system". The ISME Journal. 5 (2): 252–261. doi:10.1038/ismej.2010.126. ISSN   1751-7362. PMC   3105691 . PMID   20720578.
  13. 1 2 Partida-Martinez, Laila P.; Monajembashi, Shamci; Greulich, Karl-Otto; Hertweck, Christian (2007-05-01). "Endosymbiont-Dependent Host Reproduction Maintains Bacterial-Fungal Mutualism". Current Biology. 17 (9): 773–777. doi: 10.1016/j.cub.2007.03.039 . PMID   17412585. S2CID   17827854.
  14. Harveson, Robert (17 September 2015). "Managing Rhizopus Head Rot in Sunflower". UNL Cropwatch. Retrieved 7 May 2020.
  15. Lackner, Gerald; Hertweck, Christian (2011). "Impact of Endofungal Bacteria on Infection Biology, Food Safety, and Drug Development". PLOS Pathog. 7 (6): e1002096. doi: 10.1371/journal.ppat.1002096 . PMC   3128126 . PMID   21738468.
  16. Thompson, T. E.; Rogers, C. E.; Zimmerman, D. C. (1 March 1980). "Sunflower oil quality and quantity as affected by rhizopus head rot". Journal of the American Oil Chemists' Society. 57 (3): 106–108. doi:10.1007/BF02678814. S2CID   84507066 . Retrieved 7 May 2020.