Rydberg ionization spectroscopy

Last updated

Rydberg ionization spectroscopy is a spectroscopy technique in which multiple photons are absorbed by an atom causing the removal of an electron to form an ion. [1]

Contents

Resonance ionization spectroscopy

The ionization threshold energy of atoms and small molecules are typically larger than the photon energies that are most easily available experimentally. However, it can be possible to span this ionization threshold energy if the photon energy is resonant with an intermediate electronically excited state. While it is often possible to observe the lower Rydberg levels in conventional spectroscopy of atoms and small molecules, Rydberg states are even more important in laser ionization experiments. Laser spectroscopic experiments often involve ionization through a photon energy resonance at an intermediate level, with an unbound final electron state and an ionic core. On resonance for phototransitions permitted by selection rules, the intensity of the laser in combination with the excited state lifetime makes ionization an expected outcome. This RIS approach and variations permit sensitive detection of specific species.

Low Rydberg levels and resonance enhanced multiphoton ionization

High photon intensity experiments can involve multiphoton processes with the absorption of integer multiples of the photon energy. In experiments that involve a multiphoton resonance, the intermediate is often a Rydberg state, and the final state is often an ion. The initial state of the system, photon energy, angular momentum and other selection rules can help in determining the nature of the intermediate state. This approach is exploited in resonance enhanced multiphoton ionization spectroscopy (REMPI). An advantage of this spectroscopic technique is that the ions can be detected with almost complete efficiency and even resolved for their mass. It is also possible to gain additional information by performing experiments to look at the energy of the liberated photoelectron in these experiments. (Compton and Johnson pioneered the development of REMPI[ citation needed ])

Near-threshold Rydberg levels

The same approach that produces an ionization event can be used to access the dense manifold of near-threshold Rydberg states with laser experiments. These experiments often involve a laser operating at one wavelength to access the intermediate Rydberg state and a second wavelength laser to access the near-threshold Rydberg state region. Because of the photoabsorption selection rules, these Rydberg electrons are expected to be in highly elliptical angular momentum states. It is the Rydberg electrons excited to nearly circular angular momentum states that are expected to have the longest lifetimes. The conversion between a highly elliptical and a nearly circular near-threshold Rydberg state might happen in several ways, including encountering small stray electric fields.

Zero electron kinetic energy spectroscopy

Zero electron kinetic energy (ZEKE) spectroscopy [2] was developed with the idea of collecting only the resonance ionization photoelectrons that have extremely low kinetic energy. The technique involves waiting for a period of time after a resonance ionization experiment and then pulsing an electric field to collect the lowest energy photoelectrons in a detector. Typically, ZEKE experiments utilize two different tunable lasers. One laser photon energy is tuned to be resonant with the energy of an intermediate state. (This may be resonant with an excited state at a multiphoton transition.) Another photon energy is tuned to be close to the ionization threshold energy. The technique worked extremely well and demonstrated energy resolution that was significantly better than the laser bandwidth. It turns out that it was not the photoelectrons that were detected in ZEKE. The delay between the laser and the electric field pulse selected the longest lived and most circular Rydberg states closest to the energy of the ion core. The population distribution of surviving long-lived near threshold Rydberg states is close to the laser energy bandwidth. The electric field pulse stark shifts the near-threshold Rydberg states and vibrational autoionization occurs. ZEKE has provided a significant advance in the study of the vibrational spectroscopy of molecular ions. Schlag, Peatman and Müller-Dethlefs originated ZEKE spectroscopy.[ citation needed ]

Mass analyzed threshold ionization

Mass analyzed threshold ionization (MATI) was developed with idea of collecting the mass of the ions in a ZEKE experiment. [3]

MATI offered a mass resolution advantage to ZEKE. Because MATI also exploits vibrational autoionization of near-threshold Rydberg states, it also can offer a comparable resolution with the laser bandwidth. This information can be indispensable in understanding a variety of systems.

Photo-induced Rydberg ionization

Photo-induced Rydberg ionization (PIRI) [4] was developed following REMPI experiments on electronic autoionization of low-lying Rydberg states of carbon dioxide. In REMPI photoelectron experiments, it was determined that a two-photon ionic core photoabsorption process (followed by prompt electronic autoionization) could dominate the direct single photon absorption in the ionization of some Rydberg states of carbon dioxide. These sorts of two excited electron systems had already been under study in the atomic physics, but there the experiments involved high order Rydberg states. PIRI works because electronic autoionization can dominate direct photoionization (photoionization). The circularized near-threshold Rydberg state is more likely to undergo a core photoabsorption than to absorb a photon and directly ionize the Rydberg state. PIRI extends the near-threshold spectroscopic techniques to allow access to the electronic states (including dissociative molecular states and other hard to study systems) as well as the vibrational states of molecular ions.

Related Research Articles

<span class="mw-page-title-main">Energy level</span> Different states of quantum systems

A quantum mechanical system or particle that is bound—that is, confined spatially—can only take on certain discrete values of energy, called energy levels. This contrasts with classical particles, which can have any amount of energy. The term is commonly used for the energy levels of the electrons in atoms, ions, or molecules, which are bound by the electric field of the nucleus, but can also refer to energy levels of nuclei or vibrational or rotational energy levels in molecules. The energy spectrum of a system with such discrete energy levels is said to be quantized.

<span class="mw-page-title-main">Ionization</span> Process by which atoms or molecules acquire charge by gaining or losing electrons

Ionization, or ionisation is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecule is called an ion. Ionization can result from the loss of an electron after collisions with subatomic particles, collisions with other atoms, molecules and ions, or through the interaction with electromagnetic radiation. Heterolytic bond cleavage and heterolytic substitution reactions can result in the formation of ion pairs. Ionization can occur through radioactive decay by the internal conversion process, in which an excited nucleus transfers its energy to one of the inner-shell electrons causing it to be ejected.

In physics and physical chemistry, time-resolved spectroscopy is the study of dynamic processes in materials or chemical compounds by means of spectroscopic techniques. Most often, processes are studied after the illumination of a material occurs, but in principle, the technique can be applied to any process that leads to a change in properties of a material. With the help of pulsed lasers, it is possible to study processes that occur on time scales as short as 10−16 seconds. All time-resolved spectra are suitable to be analyzed using the two-dimensional correlation method for a correlation map between the peaks.

Autoionization is a process by which an atom or a molecule in an excited state spontaneously emits one of the outer-shell electrons, thus going from a state with charge Z to a state with charge Z + 1, for example from an electrically neutral state to a singly ionized state.

<span class="mw-page-title-main">Photoemission spectroscopy</span> Examining a substance by measuring electrons emitted in the photoelectric effect

Photoemission spectroscopy (PES), also known as photoelectron spectroscopy, refers to energy measurement of electrons emitted from solids, gases or liquids by the photoelectric effect, in order to determine the binding energies of electrons in the substance. The term refers to various techniques, depending on whether the ionization energy is provided by X-ray, XUV or UV photons. Regardless of the incident photon beam, however, all photoelectron spectroscopy revolves around the general theme of surface analysis by measuring the ejected electrons.

<span class="mw-page-title-main">Photoionization</span> Ion formation via a photon interacting with a molecule or atom

Photoionization is the physical process in which an ion is formed from the interaction of a photon with an atom or molecule.

Infrared multiple photon dissociation (IRMPD) is a technique used in mass spectrometry to fragment molecules in the gas phase usually for structural analysis of the original (parent) molecule.

<span class="mw-page-title-main">Extreme ultraviolet</span> Ultraviolet light with a wavelength of 10–121nm

Extreme ultraviolet radiation or high-energy ultraviolet radiation is electromagnetic radiation in the part of the electromagnetic spectrum spanning wavelengths from 124 nm down to 10 nm, and therefore having photons with energies from 10 eV up to 124 eV. EUV is naturally generated by the solar corona and artificially by plasma, high harmonic generation sources and synchrotron light sources. Since UVC extends to 100 nm, there is some overlap in the terms.

The Rydberg states of an atom or molecule are electronically excited states with energies that follow the Rydberg formula as they converge on an ionic state with an ionization energy. Although the Rydberg formula was developed to describe atomic energy levels, it has been used to describe many other systems that have electronic structure roughly similar to atomic hydrogen. In general, at sufficiently high principal quantum numbers, an excited electron-ionic core system will have the general character of a hydrogenic system and the energy levels will follow the Rydberg formula. Rydberg states have energies converging on the energy of the ion. The ionization energy threshold is the energy required to completely liberate an electron from the ionic core of an atom or molecule. In practice, a Rydberg wave packet is created by a laser pulse on a hydrogenic atom and thus populates a superposition of Rydberg states. Modern investigations using pump-probe experiments show molecular pathways – e.g. dissociation of (NO)2 – via these special states.

<span class="mw-page-title-main">Resonance-enhanced multiphoton ionization</span> Spectroscopy technique

Resonance-enhanced multiphoton ionization (REMPI) is a technique applied to the spectroscopy of atoms and small molecules. In practice, a tunable laser can be used to access an excited intermediate state. The selection rules associated with a two-photon or other multiphoton photoabsorption are different from the selection rules for a single photon transition. The REMPI technique typically involves a resonant single or multiple photon absorption to an electronically excited intermediate state followed by another photon which ionizes the atom or molecule. The light intensity to achieve a typical multiphoton transition is generally significantly larger than the light intensity to achieve a single photon photoabsorption. Because of this, a subsequent photoabsorption is often very likely. An ion and a free electron will result if the photons have imparted enough energy to exceed the ionization threshold energy of the system. In many cases, REMPI provides spectroscopic information that can be unavailable to single photon spectroscopic methods, for example rotational structure in molecules is easily seen with this technique.

A Rydberg molecule is an electronically excited chemical species. Electronically excited molecular states are generally quite different in character from electronically excited atomic states. However, particularly for highly electronically excited molecular systems, the ionic core interaction with an excited electron can take on the general aspects of the interaction between the proton and the electron in the hydrogen atom. The spectroscopic assignment of these states follows the Rydberg formula, named after the Swedish physicist Johannes Rydberg, and they are called Rydberg states of molecules. Rydberg series are associated with partially removing an electron from the ionic core.

X-ray absorption near edge structure (XANES), also known as near edge X-ray absorption fine structure (NEXAFS), is a type of absorption spectroscopy that indicates the features in the X-ray absorption spectra (XAS) of condensed matter due to the photoabsorption cross section for electronic transitions from an atomic core level to final states in the energy region of 50–100 eV above the selected atomic core level ionization energy, where the wavelength of the photoelectron is larger than the interatomic distance between the absorbing atom and its first neighbour atoms.

Photofragment ion imaging or, more generally, Product Imaging is an experimental technique for making measurements of the velocity of product molecules or particles following a chemical reaction or the photodissociation of a parent molecule. The method uses a two-dimensional detector, usually a microchannel plate, to record the arrival positions of state-selected ions created by resonantly enhanced multi-photon ionization (REMPI). The first experiment using photofragment ion imaging was performed by David W Chandler and Paul L Houston in 1987 on the phototodissociation dynamics of methyl iodide (iodomethane, CH3I).

Photoelectrochemical processes are processes in photoelectrochemistry; they usually involve transforming light into other forms of energy. These processes apply to photochemistry, optically pumped lasers, sensitized solar cells, luminescence, and photochromism.

Atmospheric pressure laser ionization is an atmospheric pressure ionization method for mass spectrometry (MS). Laser light in the UV range is used to ionize molecules in a resonance-enhanced multiphoton ionization (REMPI) process. It is a selective and sensitive ionization method for aromatic and polyaromatic compounds. Atmospheric photoionization is the latest in development of atmospheric ionization methods.

Photoelectron photoion coincidence spectroscopy (PEPICO) is a combination of photoionization mass spectrometry and photoelectron spectroscopy. It is largely based on the photoelectric effect. Free molecules from a gas-phase sample are ionized by incident vacuum ultraviolet (VUV) radiation. In the ensuing photoionization, a cation and a photoelectron are formed for each sample molecule. The mass of the photoion is determined by time-of-flight mass spectrometry, whereas, in current setups, photoelectrons are typically detected by velocity map imaging. Electron times-of-flight are three orders of magnitude smaller than those of ions, which allows electron detection to be used as a time stamp for the ionization event, starting the clock for the ion time-of-flight analysis. In contrast with pulsed experiments, such as REMPI, in which the light pulse must act as the time stamp, this allows to use continuous light sources, e.g. a discharge lamp or a synchrotron light source. No more than several ion–electron pairs are present simultaneously in the instrument, and the electron–ion pairs belonging to a single photoionization event can be identified and detected in delayed coincidence.

Double ionization is a process of formation of doubly charged ions when laser radiation is exerted on neutral atoms or molecules. Double ionization is usually less probable than single-electron ionization. Two types of double ionization are distinguished: sequential and non-sequential.

<span class="mw-page-title-main">Resonance ionization</span>

Resonance ionization is a process in optical physics used to excite a specific atom beyond its ionization potential to form an ion using a beam of photons irradiated from a pulsed laser light. In resonance ionization, the absorption or emission properties of the emitted photons are not considered, rather only the resulting excited ions are mass-selected, detected and measured. Depending on the laser light source used, one electron can be removed from each atom so that resonance ionization produces an efficient selectivity in two ways: elemental selectivity in ionization and isotopic selectivity in measurement.

References

  1. Hurst, G. S.; Payne, M. G.; Kramer, S. D.; Young, J. P. (1979). "Resonance ionization spectroscopy and one-atom detection". Reviews of Modern Physics. 51 (4): 767–819. Bibcode:1979RvMP...51..767H. doi:10.1103/RevModPhys.51.767. ISSN   0034-6861.
  2. Muller-Dethlefs, K; Schlag, E W (1991). "High-Resolution Zero Kinetic Energy (ZEKE) Photoelectron Spectroscopy of Molecular Systems". Annual Review of Physical Chemistry. 42 (1): 109–136. Bibcode:1991ARPC...42..109M. doi:10.1146/annurev.pc.42.100191.000545. ISSN   0066-426X.
  3. Zhu, Langchi; Johnson, Philip (1991). "Mass analyzed threshold ionization spectroscopy". The Journal of Chemical Physics. 94 (8): 5769–5771. Bibcode:1991JChPh..94.5769Z. doi:10.1063/1.460460. ISSN   0021-9606.
  4. Taylor, David P.; Goode, Jon G.; LeClaire, Jeffrey E.; Johnson, Philip M. (1995). "Photoinduced Rydberg ionization spectroscopy". The Journal of Chemical Physics. 103 (14): 6293–6295. Bibcode:1995JChPh.103.6293T. doi:10.1063/1.470409. ISSN   0021-9606.