SNAI2

Last updated
SNAI2
Identifiers
Aliases SNAI2 , SLUG, SLUGH1, SNAIL2, WS2D, snail family transcriptional repressor 2, SLUGH
External IDs OMIM: 602150; MGI: 1096393; HomoloGene: 31127; GeneCards: SNAI2; OMA:SNAI2 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_003068

NM_011415

RefSeq (protein)

NP_003059

NP_035545

Location (UCSC) Chr 8: 48.92 – 48.92 Mb Chr 16: 14.52 – 14.53 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Zinc finger protein SNAI2 is a transcription factor that in humans is encoded by the SNAI2 gene. It promotes the differentiation and migration of certain cells and has roles in initiating gastrulation. [5] [6] [7]

Contents

Function

This gene encodes a member of the Snail superfamily of C2H2-type zinc finger transcription factors. The encoded protein acts as a transcriptional repressor that binds to E-box motifs and is also likely to repress E-cadherin transcription in breast carcinoma. This protein is involved in epithelial-mesenchymal transitions and has antiapoptotic activity. It regulates differentiation and migration of neural crest cells along with other genes (e.g. FOXD3, SOX9 and SOX10, BMPs) in embryonic life. Mutations in this gene may be associated with sporadic cases of neural tube defects. [7] [8]

SNAI2 downregulates expression of E-cadherin in premigratory neural crest cells; thus, SNAI2 induces tightly bound epithelial cells to break into a loose mesenchymal phenotype, allowing gastrulation of mesoderm in the developing embryo. [9] [10] Structurally similar to anti-apoptotic Ces-1 in C. elegans, SLUG is a negative regulator of productive cell death in the developing embryo and adults. [9] [11]

Clinical significance

Widely expressed in human tissues, SLUG is most notably absent in peripheral blood leukocytes, adult liver, and both fetal and adult brain tissues. [11] SLUG plays a role in breast carcinoma as well as leukemia by downregulation of E-cadherin, which supports mesenchymal phenotype by shifting expression from a Type I to Type II cadherin profile. [11] [12] Maintenance of mesenchymal phenotype enables metastasis of tumor cells, though SLUG is expressed in carcinomas regardless to invasiveness. [9] [10] [11] A knockout model using chick embryos has also showed inhibition of mesodermal and neural crest delamination; chick embryo Slug gain of function appears to increase neural crest production. [9] Mutations in Slug are associated with loss of pregnancy during gastrulation in some animals. [9]

Interactions

Bone morphogenetic proteins (BMPs) precede expression of SLUG and are suspected as the immediate upstream inducers of gene expression. [10] [13]

Related Research Articles

<span class="mw-page-title-main">Cadherin</span> Calcium-dependent cell adhesion molecule

Cadherins (named for "calcium-dependent adhesion") are cell adhesion molecules important in forming adherens junctions that let cells adhere to each other. Cadherins are a class of type-1 transmembrane proteins, and they depend on calcium (Ca2+) ions to function, hence their name. Cell-cell adhesion is mediated by extracellular cadherin domains, whereas the intracellular cytoplasmic tail associates with numerous adaptors and signaling proteins, collectively referred to as the cadherin adhesome.

<span class="mw-page-title-main">Neural crest</span> Pluripotent embyronic cell group giving rise to diverse cell lineages

Neural crest cells are a temporary group of cells that arise from the embryonic ectoderm germ layer, and in turn give rise to a diverse cell lineage—including melanocytes, craniofacial cartilage and bone, smooth muscle, peripheral and enteric neurons and glia.

The epithelial–mesenchymal transition (EMT) is a process by which epithelial cells lose their cell polarity and cell–cell adhesion, and gain migratory and invasive properties to become mesenchymal stem cells; these are multipotent stromal cells that can differentiate into a variety of cell types. EMT is essential for numerous developmental processes including mesoderm formation and neural tube formation. EMT has also been shown to occur in wound healing, in organ fibrosis and in the initiation of metastasis in cancer progression.

<span class="mw-page-title-main">GLI2</span> Protein-coding gene in the species Homo sapiens

Zinc finger protein GLI2 also known as GLI family zinc finger 2 is a protein that in humans is encoded by the GLI2 gene. The protein encoded by this gene is a transcription factor.

In molecular genetics, the Krüppel-like family of transcription factors (KLFs) are a set of eukaryotic C2H2 zinc finger DNA-binding proteins that regulate gene expression. This family has been expanded to also include the Sp transcription factor and related proteins, forming the Sp/KLF family.

<i>Krüppel</i>

Krüppel is a gap gene in Drosophila melanogaster, located on the 2R chromosome, which encodes a zinc finger C2H2 transcription factor. Gap genes work together to establish the anterior-posterior segment patterning of the insect through regulation of the transcription factor encoding pair rule genes. These genes in turn regulate segment polarity genes. Krüppel means "cripple" in German, named for the crippled appearance of mutant larvae, who have failed to develop proper thoracic and anterior segments in the abdominal region. Mutants can also have abdominal mirror duplications.

<span class="mw-page-title-main">Mesenchyme</span> Type of animal embryonic connective tissue

Mesenchyme is a type of loosely organized animal embryonic connective tissue of undifferentiated cells that give rise to most tissues, such as skin, blood or bone. The interactions between mesenchyme and epithelium help to form nearly every organ in the developing embryo.

<span class="mw-page-title-main">Twist-related protein 1</span> Transcription factor protein

Twist-related protein 1 (TWIST1) also known as class A basic helix–loop–helix protein 38 (bHLHa38) is a basic helix-loop-helix transcription factor that in humans is encoded by the TWIST1 gene.

<span class="mw-page-title-main">ZEB2</span> Protein-coding gene in the species Homo sapiens

Zinc finger E-box-binding homeobox 2 is a protein that in humans is encoded by the ZEB2 gene. The ZEB2 protein is a transcription factor that plays a role in the transforming growth factor β (TGFβ) signaling pathways that are essential during early fetal development.

<span class="mw-page-title-main">EGR2</span> Protein-coding gene in the species Homo sapiens

Early growth response protein 2 is a protein that in humans is encoded by the EGR2 gene. EGR2 is a transcription regulatory factor, containing three zinc finger DNA-binding sites, and is highly expressed in a population of migrating neural crest cells. It is later expressed in the neural crest derived cells of the cranial ganglion. The protein encoded by Krox20 contains two cys2his2-type zinc fingers. Krox20 gene expression is restricted to the early hindbrain development. It is evolutionarily conserved in vertebrates, humans, mice, chicks, and zebra fish. In addition, the amino acid sequence and most aspects of the embryonic gene pattern is conserved among vertebrates, further implicating its role in hindbrain development. When the Krox20 is deleted in mice, the protein coding ability of the Krox20 gene is diminished. These mice are unable to survive after birth and exhibit major hindbrain defects. These defects include but are not limited to defects in formation of cranial sensory ganglia, partial fusion of the trigeminal nerve (V) with the facial (VII) and auditory (VII) nerves, the proximal nerve roots coming off of these ganglia were disorganized and intertwined among one another as they entered the brainstem, and there was fusion of the glossopharyngeal (IX) nerve complex.

<span class="mw-page-title-main">Basal-like carcinoma</span> Breast cancer subtype

The basal-like carcinoma is a recently proposed subtype of breast cancer defined by its gene expression and protein expression profile.

<span class="mw-page-title-main">Msh homeobox 2</span> Protein-coding gene in the species Homo sapiens

Homeobox protein MSX-2 is a protein that in humans is encoded by the MSX2 gene.

<span class="mw-page-title-main">SNAI1</span> Protein

Zinc finger protein SNAI1 is a protein that in humans is encoded by the SNAI1 gene. Snail is a family of transcription factors that promote the repression of the adhesion molecule E-cadherin to regulate epithelial to mesenchymal transition (EMT) during embryonic development.

<span class="mw-page-title-main">ZEB1</span> Protein-coding gene in the species Homo sapiens

Zinc finger E-box-binding homeobox 1 is a protein that in humans is encoded by the ZEB1 gene.

<span class="mw-page-title-main">ZNF148</span> Gene of the species Homo sapiens

Zinc finger protein 148 is a protein that in humans is encoded by the ZNF148 gene.

<span class="mw-page-title-main">ZNF238</span> Protein-coding gene in humans

Zinc finger protein 238 is a zinc finger containing transcription factor that in humans is encoded by the ZNF238 gene.

<span class="mw-page-title-main">Cadherin-1</span> Human protein-coding gene

Cadherin-1 or Epithelial cadherin(E-cadherin), is a protein that in humans is encoded by the CDH1 gene. Mutations are correlated with gastric, breast, colorectal, thyroid, and ovarian cancers. CDH1 has also been designated as CD324. It is a tumor suppressor gene.

<span class="mw-page-title-main">Homeobox protein goosecoid</span> Protein-coding gene in the species Homo sapiens

Homeobox protein goosecoid(GSC) is a homeobox protein that is encoded in humans by the GSC gene. Like other homeobox proteins, goosecoid functions as a transcription factor involved in morphogenesis. In Xenopus, GSC is thought to play a crucial role in the phenomenon of the Spemann-Mangold organizer. Through lineage tracing and timelapse microscopy, the effects of GSC on neighboring cell fates could be observed. In an experiment that injected cells with GSC and observed the effects of uninjected cells, GSC recruited neighboring uninjected cells in the dorsal blastopore lip of the Xenopus gastrula to form a twinned dorsal axis, suggesting that the goosecoid protein plays a role in the regulation and migration of cells during gastrulation.

<span class="mw-page-title-main">GBX2</span> Protein-coding gene in the species Homo sapiens

Homeobox protein GBX-2 is a protein that in humans is encoded by the GBX2 gene.

<span class="mw-page-title-main">Waardenburg syndrome type 2D</span> Medical condition

Waardenburg syndrome type 2D, a subtype of the Waardenburg syndrome, is a rare congenital disorder caused by a mutation in the SLUG (SNAI2) gene. It is characterized by the lack of pigmentation in the skin, hair, and eyes as well as the abnormalities in the outer wall of the cochlea. This subtype lacks the wide distance between the eyes, known as dystopia canthorum, that is observed in most patients with Waardenburg syndrome. Those affected, exhibit varying degrees of deafness or complete hearing loss along with heterochromia and reports of early graying. This disease is observed in the neonatal stages of early life.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000019549 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000022676 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Rhim H, Savagner P, Thibaudeau G, Thiery JP, Pavan WJ (Jan 1998). "Localization of a neural crest transcription factor, Slug, to mouse chromosome 16 and human chromosome 8". Mammalian Genome. 8 (11): 872–3. doi:10.1007/s003359900601. PMID   9337409. S2CID   2177885.
  6. Cohen ME, Yin M, Paznekas WA, Schertzer M, Wood S, Jabs EW (August 1998). "Human SLUG gene organization, expression, and chromosome map location on 8q". Genomics. 51 (3): 468–71. doi: 10.1006/geno.1998.5367 . PMID   9721220.
  7. 1 2 "Entrez Gene: SNAI2 snail homolog 2 (Drosophila)".
  8. Stegmann, K.; Boecker, J.; Kosan, C.; Ermert, A.; Kunz, J.; Koch, M. C. (August 1999). "Human transcription factor SLUG: mutation analysis in patients with neural tube defects and identification of a missense mutation (D119E) in the Slug subfamily-defining region". Mutation Research. 406 (2–4): 63–69. doi:10.1016/s1383-5726(99)00002-3. ISSN   0027-5107. PMID   10479723.
  9. 1 2 3 4 5 Nieto MA (March 2002). "The snail superfamily of zinc-finger transcription factors". Nature Reviews Molecular Cell Biology. 3 (3): 155–66. doi:10.1038/nrm757. PMID   11994736. S2CID   8330951.
  10. 1 2 3 Carlson BM (2013). Human Embryology and Developmental Biology (5th ed.). Philadelphia, PA: Elsevier Health Sciences. pp. 101–102, 106, 313, 362, 382. ISBN   978-1-4557-2794-0.
  11. 1 2 3 4 Inukai T, Inoue A, Kurosawa H, Goi K, Shinjyo T, Ozawa K, Mao M, Inaba T, Look AT (September 1999). "SLUG, a ces-1-related zinc finger transcription factor gene with antiapoptotic activity, is a downstream target of the E2A-HLF oncoprotein". Molecular Cell. 4 (3): 343–52. doi: 10.1016/S1097-2765(00)80336-6 . PMID   10518215.
  12. Kalluri R, Weinberg RA (June 2009). "The basics of epithelial-mesenchymal transition". The Journal of Clinical Investigation. 119 (6): 1420–8. doi:10.1172/jci39104. PMC   2689101 . PMID   19487818.
  13. Sakai D, Wakamatsu Y (2005). "Regulatory mechanisms for neural crest formation". Cells Tissues Organs. 179 (1–2): 24–35. doi:10.1159/000084506. PMID   15942190. S2CID   1886380.

Further reading