Sheath blight of rice

Last updated
A rice leaf exhibiting typical watermark lesions associated with sheath blight disease RiceSheathArk.jpg
A rice leaf exhibiting typical watermark lesions associated with sheath blight disease

Rice-sheath blight is a disease caused by Rhizoctonia solani (teleomorph is Thanetophorus cucumeris ), a basidiomycete, that causes major limitations on rice production in India and other countries of Asia. [1] It is also a problem in the southern US, where rice is also produced. [2] It can decrease yield up to 50%, and reduce its quality. [3] It causes lesions on the rice plant, and can also cause pre- and post-emergence seedling blight, banded leaf blight, panicle infection and spotted seed. [4]

Contents

Disease cycle

Infected plants develop circular or oblong lesions, usually green-gray and water-soaked, on their lower leaves, normally in the late tillering or early internode elongation stage of growth. Under favorable conditions of high humidity and low sunlight, the lesions spread and reach the upper part of the plant using runner hyphae. When there is leaf dieback and sun can penetrate and dry the lesions, they turn tan with a brown border. The sclerotia are produced near the infection in about 6 days before falling off. [3] They then survive in the soil, and can be spread as the field is prepared or when it’s flooded for irrigation, enabling them to infect other plants. [5] Both the sclerotia and mycelia of Rhizoctonia solani overwinter in plant debris and in tropical environments where they can survive in weed hosts. [6]

Management

Biological control

The use of plant growth promoting rhizobacteria (PGPRs) has been proposed as a form of biological control. They have been used to promote plant growth and control other soil-residing bacteria, and have been seen to control bacterial pathogens by competing for space and nutrients and activating plant defense mechanisms.[ citation needed ] Studies show that some strains of bacteria, when applied to the rice seed before planting, decrease the viability of the sclerotia of R. solani, reducing instances of disease and increasing yield. [1]  Some species of antagonists that could become biocontrol agents are a few strains of Pseudomonas fluorescens that inhibit the mycelial growth and sclerotia germination. [1]

Chemical control

The main control method of sheath blight is the use of systemic and nonsystemic fungicides, of systemic are considered more effective. This method produces fewer instances of disease, less inoculum and better yields. One commonly used chemical controls is azoxystrobin, a QOI that prevents the respiration of fungi. [7]

As resistant plant cultivars have not been found, and cultural controls are impractical, chemical control is currently considered the best option for controlling the disease. [8]

Pathogenesis

Once the rice sheath has been inoculated, the pathogen forms an appressorium and infection cushions. Both intercellular and intracellular hyphae are formed in the epidermal and mesophyll cells. The pathogen then releases many cell wall degrading enzymes (CWDEs) that contribute to lesion formation and spread, including polygalacturonase, cellulase, pectin methylgalacturonase, and polygalacturonic acid trans-eliminase. The ShB pathogen also produces toxins that inhibit rice radicle growth and cause wilting of leaves.[ citation needed ] The main contributors to pathogenesis by the ShB pathogen are the secreted hormones Cytochrome P450s, a family of enzymes involved in the biosynthesis of plant hormones [9] ) and growth hormones. [10]

Related Research Articles

<span class="mw-page-title-main">Stewart's wilt</span> Bacterial disease of corn

Stewart's wilt is a bacterial disease of corn caused by the bacterium Pantoea stewartii. The disease is also known as bacterial wilt or bacterial leaf blight and has been shown to be quite problematic in sweet corn. The causal organism is a facultatively anaerobic, gram-negative, rod-shaped bacterium. The disease is endemic in the mid-Atlantic and Ohio River Valley regions and in the southern portion of the Corn Belt. Stewart's Wilt causes minor reductions in field corn yield, despite common occurrence, because most hybrids grown in the Midwest have adequate resistance. However, the disease can be problematic in seed production because many countries have restrictions on maize seed from areas where the Stewart's Wilt occurs.

<i>Pythium</i> Genus of single-celled organisms

Pythium is a genus of parasitic oomycetes. They were formerly classified as fungi. Most species are plant parasites, but Pythium insidiosum is an important pathogen of animals, causing pythiosis. The feet of the fungus gnat are frequently a vector for their transmission.

<i>Rhizoctonia solani</i> Species of fungus

Rhizoctonia solani is a species of fungus in the order Cantharellales. Basidiocarps are thin, effused, and web-like, but the fungus is more typically encountered in its anamorphic state, as hyphae and sclerotia. The name Rhizoctonia solani is currently applied to a complex of related species that await further research. In its wide sense, Rhizoctonia solani is a facultative plant pathogen with a wide host range and worldwide distribution. It causes various plant diseases such as root rot, damping off, and wire stem. It can also form mycorrhizal associations with orchids.

Glomerella graminicola is an economically important crop parasite affecting both wheat and maize where it causes the plant disease Anthracnose Leaf Blight.

<i>Pantoea agglomerans</i> Species of bacterium

Pantoea agglomerans is a Gram-negative bacterium that belongs to the family Erwiniaceae.

<i>Pseudocercosporella capsellae</i> Species of fungus

Pseudocercosporella capsellae is a plant pathogen infecting crucifers. P. capsellae is the causal pathogen of white leaf spot disease, which is an economically significant disease in global agriculture. P. capsellae has a significant affect on crop yields on agricultural products, such as canola seed and rapeseed. Researchers are working hard to find effective methods of controlling this plant pathogen, using cultural control, genetic resistance, and chemical control practices. Due to its rapidly changing genome, P. capsellae is a rapidly emerging plant pathogen that is beginning to spread globally and affect farmers around the world.

<i>Sclerotinia sclerotiorum</i> Species of fungus

Sclerotinia sclerotiorum is a plant pathogenic fungus and can cause a disease called white mold if conditions are conducive. S. sclerotiorum can also be known as cottony rot, watery soft rot, stem rot, drop, crown rot and blossom blight. A key characteristic of this pathogen is its ability to produce black resting structures known as sclerotia and white fuzzy growths of mycelium on the plant it infects. These sclerotia give rise to a fruiting body in the spring that produces spores in a sac which is why fungi in this class are called sac fungi (Ascomycota). This pathogen can occur on many continents and has a wide host range of plants. When S. sclerotiorum is onset in the field by favorable environmental conditions, losses can be great and control measures should be considered.

<i>Typhula incarnata</i> Species of fungus

Typhula incarnata is a fungal plant pathogen in the family Typhulaceae.

<i>Ceratobasidium cornigerum</i> Species of fungus

Ceratobasidium cornigerum is a species of fungus in the order Cantharellales. Basidiocarps are thin, spread on the substrate out like a film (effused) and web-like. An anamorphic state is frequently obtained when isolates are cultured. Ceratobasidium cornigerum is saprotrophic, but is also a facultative plant pathogen, causing a number of economically important crop diseases, and an orchid endomycorrhizal associate. The species is genetically diverse and is sometimes treated as a complex of closely related taxa. DNA research shows the species actually belongs within the genus Rhizoctonia.

<i>Didymella pinodes</i> Species of fungus

Didymella pinodes is a hemibiotrophic fungal plant pathogen and the causal agent of ascochyta blight on pea plants. It is infective on several species such as Lathyrus sativus, Lupinus albus, Medicago spp., Trifolium spp., Vicia sativa, and Vicia articulata, and is thus defined as broadrange pathogen.

<i>Alternaria solani</i> Species of fungus

Alternaria solani is a fungal pathogen that produces a disease in tomato and potato plants called early blight. The pathogen produces distinctive "bullseye" patterned leaf spots and can also cause stem lesions and fruit rot on tomato and tuber blight on potato. Despite the name "early," foliar symptoms usually occur on older leaves. If uncontrolled, early blight can cause significant yield reductions. Primary methods of controlling this disease include preventing long periods of wetness on leaf surfaces and applying fungicides. Early blight can also be caused by Alternaria tomatophila, which is more virulent on stems and leaves of tomato plants than Alternaria solani.

<i>Ustilaginoidea virens</i> Species of fungus

Ustilaginoidea virens, perfect sexual stage Villosiclava virens, is a plant pathogen which causes the disease "false smut" of rice which reduces both grain yield and grain quality. The disease occurs in more than 40 countries, especially in the rice producing countries of Asia. but also in the U.S. As the common name suggests, it is not a true smut (fungus), but an ascomycete. False smut does not replace all or part of the kernel with a mass of black spores, rather sori form erupting through the palea and lemma forming a ball of mycelia, the outermost layers are spore-producing. Infected rice kernels are always destroyed by the disease.

Magnaporthe salvinii is a fungus known to attack a variety of grass and rice species, including Oryza sativa and Zizania aquatica. Symptoms of fungal infection in plants include small, black, lesions on the leaves that develop into more widespread leaf rot, which then spreads to the stem and causes breakage. As part of its life cycle, the fungus produces sclerotia that persist in dead plant tissue and the soil. Management of the fungus may be effected by tilling the soil, reducing its nitrogen content, or by open field burning, all of which reduce the number of sclerotia, or by the application of a fungicide.

Fusarium acuminatum is a fungal plant pathogen.

This article summarizes different crops, what common fungal problems they have, and how fungicide should be used in order to mitigate damage and crop loss. This page also covers how specific fungal infections affect crops present in the United States.

<i>Rhizoctonia</i> Genus of fungi

Rhizoctonia is a genus of fungi in the order Cantharellales. Species form thin, effused, corticioid basidiocarps, but are most frequently found in their sterile, anamorphic state. Rhizoctonia species are saprotrophic, but some are also facultative plant pathogens, causing commercially important crop diseases. Some are also endomycorrhizal associates of orchids. The genus name was formerly used to accommodate many superficially similar, but unrelated fungi.

<i>Helicobasidium</i> Genus of fungi


Helicobasidium is a genus of fungi in the subdivision Pucciniomycotina. Basidiocarps are corticioid (patch-forming) and are typically violet to purple. Microscopically they have auricularioid basidia. Asexual anamorphs, formerly referred to the genus Thanatophytum, produce sclerotia. Conidia-bearing anamorphs are parasitic on rust fungi and are currently still referred to the genus Tuberculina.

<i>Xanthomonas oryzae</i> pv. <i>oryzae</i> Variety of bacteria

Xanthomonas oryzae pv. oryzae is a bacterial pathovar that causes a serious blight of rice, other grasses, and sedges.

A mycoparasite is an organism with the ability to parasitize fungi.

Epicoccum sorghinum is an ascomycete fungus with known plant pathogenicity to sugarcane and rice, causing ring spot disease and leaf spot disease. This fungus is primarily known for its production of tenuazonic acid, which leads to complications with growth and causes the symptoms of leaf spot disease. Tenuazonic acid not only affects plant growth, but has recently been proven to impact human health due to its prevalence in food and beverages. It is widely dispersed, affecting multiple hosts in different countries. Although not a serious threat, Epicoccum sorghinum has been known to influence the sorghum grain-mold complex in ways which reduce crop yields, seed viability, and kernel weight. As a result of continuous phylogenetic and morphological discoveries relevant to Epicoccum sorghinum, this fungus has undergone a number of name changes.

References

  1. 1 2 3 Devi, T. Vasantha; Vizhi, R. Malar; Sakthivel, N.; Gnanamanickam, S. S. (Oct 1989). "Biological control of sheath-blight of rice in india with antagonistic bacteria". Plant and Soil. 119 (2): 325–330. doi:10.1007/BF02370425. ISSN   0032-079X. S2CID   24890314.
  2. Jones, R. K. (1989). "Characterization and Pathogenicity of Rhizoctonia spp. Isolated from Rice, Soybean, and Other Crops Grown in Rotation with Rice in Texas". Plant Disease. 73 (12): 1004. doi:10.1094/pd-73-1004. ISSN   0191-2917.
  3. 1 2 Lee, Fleet N. (1983). "Rice Sheath Blight: A Major Rice Disease". Plant Disease. 67 (7): 829. doi:10.1094/pd-67-829. ISSN   0191-2917.
  4. Kumar, Dharmendra; Amaresh Gouda, S. (July 2018). "Evaluation of mycoparasitic efficacy of nematode-trapping fungi against Rhizoctonia solani inciting sheath blight disease in rice (Oryza sativa L.)". Biological Control. 122: 31–40. doi:10.1016/j.biocontrol.2018.04.003. ISSN   1049-9644. S2CID   90656694.
  5. G., R.V.; Webster, Robert K.; Gunnell, Pamela S. (Nov 1992). "Compendium of Rice Diseases". Mycologia. 84 (6): 953. doi:10.2307/3760308. ISSN   0027-5514. JSTOR   3760308.
  6. Vijay Krishna Kumar, K.; Yellareddygari, S.K.R.; Reddy, M.S.; Kloepper, J.W.; Lawrence, K.S.; Zhou, X.G.; Sudini, H.; Groth, D.E.; Krishnam Raju, S.; Miller, M.E. (Mar 2012). "Efficacy of Bacillus subtilis MBI 600 Against Sheath Blight Caused by Rhizoctonia solani and on Growth and Yield of Rice" (PDF). Rice Science. 19 (1): 55–63. doi:10.1016/s1672-6308(12)60021-3. ISSN   1672-6308.
  7. "Rice Sheath Blight". Rice Sheath Blight. Retrieved 2019-12-15.
  8. Hashiba, Teruyoshi; Kobayashi, Takashi (1996), "Rice Diseases Incited by Rhizoctonia Species", Rhizoctonia Species: Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control, Springer Netherlands, pp. 331–340, doi:10.1007/978-94-017-2901-7_30, ISBN   978-90-481-4597-3
  9. Kim, G.-T.; Tsukaya, H. (2002). "Regulation of the biosynthesis of plant hormones by cytochrome P450s". Journal of Plant Research. 115 (3): 169–77. doi:10.1007/s102650200022. PMID   12579366. S2CID   1267602.
  10. Zheng, Aiping; Lin, Runmao; Zhang, Danhua; Qin, Peigang; Xu, Lizhi; Ai, Peng; Ding, Lei; Wang, Yanran; Chen, Yao; Liu, Yao; Sun, Zhigang (2013-01-29). "The evolution and pathogenic mechanisms of the rice sheath blight pathogen". Nature Communications. 4 (1): 1424. Bibcode:2013NatCo...4.1424Z. doi:10.1038/ncomms2427. ISSN   2041-1723. PMC   3562461 . PMID   23361014.