Slicer (3D printing)

Last updated

A slicer is a toolpath generation software used in 3D printing. It facilitates the conversion of a 3D object model to specific instructions for the printer. The slicer converts a model in STL (stereolithography) format into printer commands in G-code format. This is particularly usable in fused filament fabrication and other related 3D printing processes. [1] [2] [3]

Contents

Features

A slicer initially segments the object as a stack of flat layers. It then describes these layers through linear movements of the 3D printer's extruder, the fixation laser, or an equivalent component. [4] All these movements, together with some specific printer commands like the ones to control the extruder temperature or bed temperature, are ultimately compiled in the G-code file. This file can then be transferred to the printer for execution.

Different densities of infill (in yellow), as generated by Cura slicer, from solid to hollow. Infill density.jpg
Different densities of infill (in yellow), as generated by Cura slicer, from solid to hollow.

Additional features of slicer are listed below:

Support structure (in blue) generated by Cura software. Support structure in 3D printing.jpg
Support structure (in blue) generated by Cura software.
Comparative of base layers (in blue): a) skirt; b) brim; c) raft, generated by Cura software Skirts, Brims, Rafts.jpg
Comparative of base layers (in blue): a) skirt; b) brim; c) raft, generated by Cura software

List of slicer software

There is a diverse array of slicer applications available, including many that are free and open-source. Some of the most commonly used ones include:

NameLicenseRelations
Ultimaker Cura GNU LGPL
OrcaSlicer GNU AGPL Fork of BambuStudio
BambuStudio GNU AGPL Fork of PrusaSlicer
SuperSlicer GNU AGPL Fork of PrusaSlicer
PrusaSlicer GNU AGPL Fork of Slic3r
Slic3r GNU AGPL
Simplify3DProprietary

Related Research Articles

<span class="mw-page-title-main">3D printing</span> Additive process used to make a three-dimensional object

3D printing or additive manufacturing is the construction of a three-dimensional object from a CAD model or a digital 3D model. It can be done in a variety of processes in which material is deposited, joined or solidified under computer control, with the material being added together, typically layer by layer.

<span class="mw-page-title-main">STL (file format)</span> File format for stereolithography applications

STL is a file format native to the stereolithography CAD software created by 3D Systems. Chuck Hull, the inventor of stereolithography and 3D Systems’ founder, reports that the file extension is an abbreviation for stereolithography.

<span class="mw-page-title-main">Rapid prototyping</span> Group of techniques to quickly construct physical objects

Rapid prototyping is a group of techniques used to quickly fabricate a scale model of a physical part or assembly using three-dimensional computer aided design (CAD) data. Construction of the part or assembly is usually done using 3D printing or "additive layer manufacturing" technology.

Digital modeling and fabrication is a design and production process that combines 3D modeling or computing-aided design (CAD) with additive and subtractive manufacturing. Additive manufacturing is also known as 3D printing, while subtractive manufacturing may also be referred to as machining, and many other technologies can be exploited to physically produce the designed objects.

D-Shape is a large 3-dimensional printer that uses binder-jetting, a layer by layer printing process, to bind sand with an inorganic seawater and magnesium-based binder in order to create stone-like objects. Invented by Enrico Dini, founder of Monolite UK Ltd, the first model of the D-Shape printer used epoxy resin, commonly used as an adhesive in the construction of skis, cars, and airplanes, as a binder. Dini patented this model in 2006. After experiencing problems with the epoxy, Dini changed the binder to the current magnesium-based one and patented the printer again in September 2008. In the future, Dini aims to use the printer to create full-scale buildings.

Printrbot is a 3D printer company created by Brook Drumm in 2011 and originally funded through Kickstarter. Printrbot printers use fused deposition modelling to manufacture 3-dimensional artifacts.

<span class="mw-page-title-main">Airwolf 3D</span>

Airwolf 3D is a 3D printer designer headquartered in Costa Mesa, California. It was founded in 2012 by Erick and Eva Wolf.

Robocasting is an additive manufacturing technique analogous to Direct Ink Writing and other extrusion-based 3D-printing techniques in which a filament of a paste-like material is extruded from a small nozzle while the nozzle is moved across a platform. The object is thus built by printing the required shape layer by layer. The technique was first developed in the United States in 1996 as a method to allow geometrically complex ceramic green bodies to be produced by additive manufacturing. In robocasting, a 3D CAD model is divided up into layers in a similar manner to other additive manufacturing techniques. The material is then extruded through a small nozzle as the nozzle's position is controlled, drawing out the shape of each layer of the CAD model. The material exits the nozzle in a liquid-like state but retains its shape immediately, exploiting the rheological property of shear thinning. It is distinct from fused deposition modelling as it does not rely on the solidification or drying to retain its shape after extrusion.

<span class="mw-page-title-main">Fused filament fabrication</span> 3D printing process

Fused filament fabrication (FFF), also known as fused deposition modeling, or filament freeform fabrication, is a 3D printing process that uses a continuous filament of a thermoplastic material. Filament is fed from a large spool through a moving, heated printer extruder head, and is deposited on the growing work. The print head is moved under computer control to define the printed shape. Usually the head moves in two dimensions to deposit one horizontal plane, or layer, at a time; the work or the print head is then moved vertically by a small amount to begin a new layer. The speed of the extruder head may also be controlled to stop and start deposition and form an interrupted plane without stringing or dribbling between sections. "Fused filament fabrication" was coined by the members of the RepRap project to give an acronym (FFF) that would be legally unconstrained in its use.

Fusion3 is a Greensboro, North Carolina company which manufactures 3D printers for commercial and education use. Fusion3 3D Printers use fused deposition modeling to create three-dimensional solid or hollow objects from a digital model, which can be designed or produced from a scan.

<span class="mw-page-title-main">Prusa i3</span> 3D printer product line and related designs

The Prusa i3 is a family of fused deposition modeling 3D printers, manufactured by Czech company Prusa Research under the trademarked name Original Prusa i3. Part of the RepRap project, Prusa i3 printers were called the most used 3D printer in the world in 2016. The first Prusa i3 was designed by Josef Průša in 2012, and was released as a commercial kit product in 2015. The latest model is available in both kit and factory assembled versions. The Prusa i3's comparable low cost and ease of construction and modification made it popular in education and with hobbyists and professionals, with the Prusa i3 model MK2 printer receiving several awards in 2016.

<span class="mw-page-title-main">Cura (software)</span> 3D printer software

Cura is an open source slicing application for 3D printers. It was created by David Braam who was later employed by Ultimaker, a 3D printer manufacturing company, to maintain the software. Cura is available under LGPLv3 license. Cura was initially released under the open source Affero General Public License version 3, but on 28 September 2017 the license was changed to LGPLv3. This change allowed for more integration with third-party CAD applications. Development is hosted on GitHub. Ultimaker Cura is used by over one million users worldwide and handles 1.4 million print jobs per week. It is the preferred 3D printing software for Ultimaker 3D printers, but it can be used with other printers as well.

<span class="mw-page-title-main">3D printing processes</span> List of 3D printing processes

A variety of processes, equipment, and materials are used in the production of a three-dimensional object via additive manufacturing. 3D printing is also known as additive manufacturing, because the numerous available 3D printing process tend to be additive in nature, with a few key differences in the technologies and the materials used in this process.

<span class="mw-page-title-main">3D printing filament</span> Thermoplastic feedstock for 3D printers

3D printing filament is the thermoplastic feedstock for fused deposition modeling 3D printers. There are many types of filament available with different properties.

Material extrusion-based additive manufacturing (EAM) represents one of the seven categories of 3d printing processes, defined by the ISO international standard 17296-2. While it is mostly used for plastics, under the name of FDM or FFF, it can also be used for metals and ceramics. In this AM process category, the feedstock materials are mixtures of a polymeric binder and a fine grain solid powder of metal or ceramic materials. Similar type of feedstock is also used in the Metal Injection Molding (MIM) and in the Ceramic Injection Molding (CIM) processes. The extruder pushes the material towards a heated nozzle thanks to

3D printing speed measures the amount of manufactured material over a given time period, where the unit of time is measured in Seconds, and the unit of manufactured material is typically measured in units of either kg, mm or cm3, depending on the type of additive manufacturing technique.

Multi-material 3D printing is the additive manufacturing procedure of using multiple materials at the same time to fabricate an object. Similar to single material additive manufacturing it can be realised through methods such as FFF, SLA and Inkjet 3D printing. By expanding the design space to different materials, it establishes the possibilities of creating 3D printed objects of different color or with different material properties like elasticity or solubility. The first multi-material 3D printer Fab@Home became publicly available in 2006. The concept was quickly adopted by the industry followed by many consumer ready multi-material 3D printers.

Markforged is an American public additive manufacturing company that designs, develops, and manufactures The Digital Forge — an industrial platform of 3D printers, software and materials that enables manufacturers to print parts at the point-of-need. The company is headquartered in Waltham, Massachusetts, in the Greater Boston Area. Markforged was founded by Gregory Mark and the chief technology officer (CTO) David Benhaim in 2013. It produced the first 3D printers capable of printing continuous carbon fiber reinforcement and utilizes a cloud architecture.

<span class="mw-page-title-main">3D concrete printing</span>

3D concrete printing, or simply concrete printing, refers to digital fabrication processes for cementitious materials based on one of several different 3D printing technologies. 3D-printed concrete eliminates the need for formwork, reducing material waste and allowing for greater geometric freedom in complex structures. With recent developments in mix design and 3D printing technology over the last decade, 3D concrete printing has grown exponentially since its emergence in the 1990s. Architectural and structural applications of 3D-printed concrete include the production of building blocks, building modules, street furniture, pedestrian bridges, and low-rise residential structures.

A hotend is a component used in fused filament deposition 3D printers. Its purpose is to heat up and melt filament material for depositing into the intended shape.

References

  1. Evans, Brian (25 September 2012). Practical 3D Printers: The Science and Art of 3D Printing. apress. ISBN   978-1-4302-4393-9.
  2. Keon Aristech Boozarjomehri (28 April 2016). 3D Printing at School and Makerspaces: Project Learning with 3D Printing. Cavendish Square. ISBN   978-1-6804-5016-3.
  3. Liza Wallach Kloski, Nick Kloski (2016). Getting Started with 3D Printing: A Hands-on Guide to the Hardware, Software, and Services Behind the New Manufacturing Revolution. Maker Media, Inc. ISBN   978-1-6804-5020-0.
  4. "The Best Slicer Software For All Levels". 3dsourced. 2023-10-29. Retrieved 2023-12-21.
  5. "When should I use a raft, when should I use a brim?". 3D Printing Stack Exchange. Retrieved 2018-09-15.
  6. "Rafts, Skirts and Brims!". www.simplify3d.com. Retrieved 2018-09-15.