Space elevator construction

Last updated

Three basic approaches for constructing a space elevator have been proposed: First, using in-space resources to manufacture the whole cable in space. Second, launching and deploying a first seed cable and successively reinforcing the seed cable by additional cables, transported by climbers. Third, spooling two cables down and then connecting the ends, forming a loop.

Contents

Early construction concepts

There are two approaches to constructing a space elevator. Either the cable is manufactured in space or it is launched into space and gradually reinforced by additional cables, transported by climbers into space. Manufacturing the cable in space could be done in principle by using an asteroid or Near-Earth object. [1] [2]

One early plan involved lifting the entire mass of the elevator into geostationary orbit, and lowering one cable downwards towards the Earth's surface while simultaneously another cable is deployed upwards directly away from the Earth's surface. [3]

Tidal forces (gravity and centrifugal force) would naturally pull the cables directly towards and directly away from the Earth and keep the elevator balanced around geostationary orbit. As the cable is deployed, Coriolis forces would pull the upper portion of the cable somewhat to the West and the lower portion of the cable somewhat to the East; this effect can be controlled by varying the deployment speed. [3]

However, this approach requires lifting hundreds or even thousands of tons on conventional rockets, an expensive proposition.

Cable seeding design

Bradley C. Edwards, former Director of Research for the Institute for Scientific Research (ISR), based in Fairmont, West Virginia proposed that, if nanotubes with sufficient strength could be made in bulk, a space elevator could be built in little more than a decade, rather than the far future. He proposed that a single hair-like 20-ton 'seed' cable[ failed verification ] be deployed in the traditional way, giving a very lightweight elevator with very little lifting capacity. Then, progressively heavier cables would be pulled up from the ground along it, repeatedly strengthening it until the elevator reaches the required mass and strength. This is much the same technique used to build suspension bridges. The length of this cable is 35,786 km or 35,786,000 m. A 20-ton cable would weigh about 1.12 grams per m. [4]

Loop elevator design

This is a less well developed design, but offers some other possibilities.

If the cable provides a useful tensile strength to density of about 48.1 GPa/(kg/m3) or above, then a constant width cable can reach beyond geostationary orbit without breaking under its own weight. The far end can then be turned around and passed back down to the Earth forming a constant width loop, which would be kept spinning to avoid tangling. The two sides of the loop are naturally kept apart by coriolis forces due to the rotation of the Earth and the loop. By increasing the thickness of the cable from the ground a very quick (exponential) build-up of a new elevator may be performed (it helps that no active climbers are needed, and power is applied mechanically.) However, because the loop runs at constant speed, joining and leaving the loop may be somewhat challenging, and the carrying capacity of such a loop is lower than a conventional tapered design. [5]

Current status

Currently, the cable seeding design and the space manufacturing design are considered. The space manufacturing design would use a carbonaceous asteroid or near-Earth object for mining its material and producing a carbon nanotube cable. [2] The cable would then be transported back to geostationary orbit and spooled down. Although this approach shifts the construction complexity away from the use of climbers in the cable seeding design, it increases the complexity of the required in-space infrastructure.

The cable seeding design could be rendered infeasible in case the material strength is considerably lower than was projected by Brad Edwards. [2]

Current technological status of the cable seeding design:

ParameterRequiredAchievedYearNotes
Tether
Strength30-100 Meganewtons/(kg/m) [6] [ citation needed ]7,100 N2010House Tether (Zylon fiber and M77 adhesive). [7]
Climber
Speed83 m/s (300 km/h)a18.3 m/s (66 km/h)
4 m/s (14 km/h)
2010
2009
Battery-powered climber to a distance of 300m, Second Japan Space Elevator Technical & Engineering Competition. [8]
Beam-powered climber to an altitude of 1km, Space Elevator Games 2009. [9]
Altitude36,000 km [10] 1km2009Speed over 4 m/s (14 km/h). [9]
Payload10kg2009Estimated - climber dragged bottom stop about 30m up, with speed over 6 m/s (22 km/h), during the Space Elevator Games 2009. [9]
Laser power beaming
Power beam1 kW2009Distance greater than 300 meters. [9]

a) It would take 5 days to reach a geostationary altitude of 36,000 km with this speed. [11]

See also

Related Research Articles

<span class="mw-page-title-main">Space elevator</span> Proposed type of space transportation system

A space elevator, also referred to as a space bridge, star ladder, and orbital lift, is a proposed type of planet-to-space transportation system, often depicted in science fiction. The main component would be a cable anchored to the surface and extending into space. An Earth-based space elevator cannot be constructed with a tall tower supported from below due to the immense weight—instead, it would consist of a cable with one end attached to the surface near the equator and the other end attached to a counterweight in space beyond geostationary orbit. The competing forces of gravity, which is stronger at the lower end, and the upward centrifugal force, which is stronger at the upper end, would result in the cable being held up, under tension, and stationary over a single position on Earth. With the tether deployed, climbers (crawlers) could repeatedly climb up and down the tether by mechanical means, releasing their cargo to and from orbit. The design would permit vehicles to travel directly between a planetary surface, such as the Earth's, and orbit, without the use of large rockets.

<span class="mw-page-title-main">Geostationary orbit</span> Circular orbit above Earths Equator and following the direction of Earths rotation

A geostationary orbit, also referred to as a geosynchronous equatorial orbit (GEO), is a circular geosynchronous orbit 35,786 km (22,236 mi) in altitude above Earth's equator, 42,164 km (26,199 mi) in radius from Earth's center, and following the direction of Earth's rotation.

<span class="mw-page-title-main">Skyhook (structure)</span> Proposed momentum exchange tether

A skyhook is a proposed momentum exchange tether that aims to reduce the cost of placing payloads into low Earth orbit. A heavy orbiting station is connected to a cable which extends down towards the upper atmosphere. Payloads, which are much lighter than the station, are hooked to the end of the cable as it passes, and are then flung into orbit by rotation of the cable around the center of mass. The station can then be reboosted to its original altitude by electromagnetic propulsion, rocket propulsion, or by deorbiting another object with the same kinetic energy as transferred to the payload.

Space elevator economics compares the cost of sending a payload into Earth orbit via a space elevator with the cost of doing so with alternatives, like rockets.

<span class="mw-page-title-main">Lunar space elevator</span> Proposed transportation system

A lunar space elevator or lunar spacelift is a proposed transportation system for moving a mechanical climbing vehicle up and down a ribbon-shaped tethered cable that is set between the surface of the Moon "at the bottom" and a docking port suspended tens of thousands of kilometers above in space at the top.

<span class="mw-page-title-main">Megastructure</span> Very large artificial object

A megastructure is a very large artificial object, although the limits of precisely how large vary considerably. Some apply the term to any especially large or tall building. Some sources define a megastructure as an enormous self-supporting artificial construct. The products of megascale engineering or astroengineering are megastructures. The lower bound of megastructural engineering might be considered any structure that has any single dimension 1 megameter (1000 km) in length.

Megascale engineering is a form of exploratory engineering concerned with the construction of structures on an enormous scale. Typically these structures are at least 1,000 km (620 mi) in length—in other words, at least one megameter, hence the name. Such large-scale structures are termed megastructures.

A momentum exchange tether is a kind of space tether that could theoretically be used as a launch system, or to change spacecraft orbits. Momentum exchange tethers create a controlled force on the end-masses of the system due to the pseudo-force known as centrifugal force. While the tether system rotates, the objects on either end of the tether will experience continuous acceleration; the magnitude of the acceleration depends on the length of the tether and the rotation rate. Momentum exchange occurs when an end body is released during the rotation. The transfer of momentum to the released object will cause the rotating tether to lose energy, and thus lose velocity and altitude. However, using electrodynamic tether thrusting, or ion propulsion the system can then re-boost itself with little or no expenditure of consumable reaction mass.

<span class="mw-page-title-main">Launch loop</span> Proposed system for launching objects into orbit

A launch loop, or Lofstrom loop, is a proposed system for launching objects into orbit using a moving cable-like system situated inside a sheath attached to the Earth at two ends and suspended above the atmosphere in the middle. The design concept was published by Keith Lofstrom and describes an active structure maglev cable transport system that would be around 2,000 km (1,240 mi) long and maintained at an altitude of up to 80 km (50 mi). A launch loop would be held up at this altitude by the momentum of a belt that circulates around the structure. This circulation, in effect, transfers the weight of the structure onto a pair of magnetic bearings, one at each end, which support it.

<span class="mw-page-title-main">Orbital ring</span> Conceptual artificial ring around the Earth

An orbital ring is a concept of an artificial ring placed around a body and set rotating at such a rate that the apparent centrifugal force is large enough to counteract the force of gravity. For the Earth, the required speed is on the order of 10 km/sec, compared to a typical low Earth orbit velocity of 8 km/sec. The structure is intended to be used as a space station or as a planetary vehicle for very high-speed transportation or space launch.

This is a list of occurrences of space elevators in fiction. Some depictions were made before the space elevator concept became fully established.

The specific strength is a material's strength divided by its density. It is also known as the strength-to-weight ratio or strength/weight ratio or strength-to-mass ratio. In fiber or textile applications, tenacity is the usual measure of specific strength. The SI unit for specific strength is Pa⋅m3/kg, or N⋅m/kg, which is dimensionally equivalent to m2/s2, though the latter form is rarely used. Specific strength has the same units as specific energy, and is related to the maximum specific energy of rotation that an object can have without flying apart due to centrifugal force.

<span class="mw-page-title-main">Space-based solar power</span> Concept of collecting solar power in outer space and distributing it to Earth

Space-based solar power is the concept of collecting solar power in outer space with solar power satellites (SPS) and distributing it to Earth. Its advantages include a higher collection of energy due to the lack of reflection and absorption by the atmosphere, the possibility of very little night, and a better ability to orient to face the sun. Space-based solar power systems convert sunlight to some other form of energy which can be transmitted through the atmosphere to receivers on the Earth's surface.

<span class="mw-page-title-main">Elevator:2010</span>

Elevator:2010 was an inducement prize contest with the purpose of developing space elevator and space elevator-related technologies. Elevator:2010 organized annual competitions for climbers, ribbons and power-beaming systems, and was operated by a partnership between Spaceward Foundation and the NASA Centennial Challenges.

<span class="mw-page-title-main">Non-rocket spacelaunch</span> Concepts for launch into space

Non-rocket spacelaunch refers to theoretical concepts for launch into space where much of the speed and altitude needed to achieve orbit is provided by a propulsion technique that is not subject to the limits of the rocket equation. Although all space launches to date have been rockets, a number of alternatives to rockets have been proposed. In some systems, such as a combination launch system, skyhook, rocket sled launch, rockoon, or air launch, a portion of the total delta-v may be provided, either directly or indirectly, by using rocket propulsion.

There are risks associated with never-done-before technologies like the construction and operation of a space elevator. A space elevator would present a navigational hazard, both to aircraft and spacecraft. Aircraft could be dealt with by means of simple air-traffic control restrictions. Impacts by space objects such as meteoroids, satellites and micrometeorites pose a more difficult problem for construction and operation of a space elevator.

<span class="mw-page-title-main">Space tether missions</span> Space technology using tethers

A number of space tethers have been deployed in space missions. Tether satellites can be used for various purposes including research into tether propulsion, tidal stabilisation and orbital plasma dynamics.

<span class="mw-page-title-main">Space tether</span> Type of tether

Space tethers are long cables which can be used for propulsion, momentum exchange, stabilization and attitude control, or maintaining the relative positions of the components of a large dispersed satellite/spacecraft sensor system. Depending on the mission objectives and altitude, spaceflight using this form of spacecraft propulsion is theorized to be significantly less expensive than spaceflight using rocket engines.

A space elevator is a theoretical system using a super-strong ribbon going from the surface of the Earth to a point beyond Geosynchronous orbit. The center of gravity of the ribbon would be exactly in geosynchronous orbit, so that the ribbon would always stay above the anchor point. Vehicles would climb the ribbon powered by a beam of energy projected from the surface of the Earth. Building a space elevator requires materials and techniques that do not currently exist. A variety of Space Elevator competitions have been held in order to stimulate the development of such materials and techniques.

Hypothetical technology is technology that does not exist yet, but that could exist in the future. This article presents examples of technologies that have been hypothesized or proposed, but that have not been developed yet. An example of hypothetical technology is teleportation.

References

  1. D.V. Smitherman (Ed.), Space Elevators: An Advanced Earth-Space Infrastructure for the New Millennium Archived 2015-03-28 at the Wayback Machine , NASA/CP-2000-210429, Marshall Space Flight Center, Huntsville, Alabama, 2000
  2. 1 2 3 Hein, A.M., Producing a Space Elevator Tether Using a NEO: A Preliminary Assessment, International Astronautical Congress 2012, IAC-2012, Naples, Italy, 2012
  3. 1 2 Pearson, J. (1975). The orbital tower: a spacecraft launcher using the Earth's rotational energy. Acta Astronautica, 2(9), 785-799.
  4. "The Space Elevator: Phase I Study" by Bradley Carl Edwards
  5. Gassend, Blaise. "Exponential Tethers for Accelerated Space Elevator Deployment" (PDF). Retrieved 2006-03-05.
  6. The specific strength of 100 meganewtons/(kg/m) is for a constant cross section cable and a safety factor of 2. The ability to build with a constant cross section cable has some advantages, but is not necessary. Tapering the cable cross section from a maximum at the geosynchronous orbit level to minimums at the bottom and top allows construction with materials having less specific strength. The minimum specific strength required for a tapered cable depends largely on launch budget and other financial factors. A 30 meganewton/(kg/m) lower limit has been mentioned as a goal for specific strength to be able to support a reasonably financially feasible space elevator -- the motto of the 2011 Space Elevator Conference was "30 MegaYuris or Bust!". A "Yuri" here is used as the unit representing one Newton/(kg/m).
  7. "How close is the Space Elevator? How expensive will it be?- Data Point References". Archived from the original on 2013-06-01. Retrieved 2014-04-19.
  8. "Results from Japan's 2010 JSETEC Competition". 2010-08-11. Retrieved 2011-04-23.
  9. 1 2 3 4 Nugent, Tom (2009-11-07). "Highlights from 2009 Competition". LaserMotive. Archived from the original on 2012-03-16. Retrieved 2011-04-23.
  10. Space elevator#Cable
  11. Space elevator#Climbers