Stadthaus

Last updated
Stadthaus
Murray Grove.png
Stadthaus, Murray Grove in 2014
Stadthaus
General information
StatusComplete
Location London
Address24 Murray Grove
Construction started2007
Completed2009
Height
Architectural29 m (95 ft)
Tip30.3 m (99 ft)
Top floor26 m (85 ft)
Technical details
MaterialTimber
Floor count9
Floor area2,890 m2 (31,100 sq ft)
Lifts/elevators2
Design and construction
ArchitectWaugh Thistleton Architects
DeveloperTelford Homes
Structural engineerTechniker Ltd
Main contractorTelford Homes
Other information
Parking5
References
[1]


Stadthaus is a nine-storey residential building in Hackney, London. It is thought to be the second tallest timber residential structure in the world, after the Forte apartment complex in Melbourne, Australia. [2] [3] It was designed in collaboration between architects Waugh Thistleton, [4] structural engineers Techniker, [5] and timber panel manufacturer KLH. [6]

Contents

Stadthaus is the first high-density housing building to be built from pre-fabricated cross-laminated timber panels. [ citation needed ] It is the first building in the world of this height to construct not only load-bearing walls and floor slabs but also stair and lift cores entirely from timber. [ citation needed ]

Ecological aspects

Waugh Thistleton are committed to reducing the environmental impact of architecture [ citation needed ]. In the endeavour to build buildings that reduce the impact on the planet, the Practice see it as vital not only to consider the energy usage over the life of the building but also the energy expended in producing the building. For some years Waugh Thistleton have been researching the use of solid timber structures in housing to replace the accepted route of concrete and steel.

Timber stores 0.8t of carbon dioxide within 1 cubic metre and is a replenishable material. In comparison, the production of both concrete and steel are one-way energy intensive processes that release large amounts of carbon dioxide into the atmosphere. The panels can also be easily demounted and used as an energy source at the end of the building’s life. So the case for timber was made to the client and London Borough of Hackney's planning department both in terms of the environmental consideration and potential economies to cost and programme.

Design approach

The form of the design was predetermined by a number of factors. Previous architects had received two planning refusals on the site and as a result the acceptable parameters for the building’s approval were clearly defined. The site area is 17m x 17m and bound on all sides by other residential buildings. An extrusion of the site area set the building’s plan form and the height at nine storeys was set as a maximum, before overshadowing would become an issue. [7]

The Metropolitan Housing Trust [8] required that a separate ground floor entrance be provided for the affordable units. This resulted in a mirrored floor plan from east to west, with an identical entrance to each aspect. Both tenures are served by an individual staircase and lift. The five upper storeys are designated for private sale and the three lower storeys for social housing. The majority of social housing is made up of family apartments which overlook the play area to the rear of the building.

Telford Homes specifically required that the interiors were consistent with a standard developer specification, which means that inside the apartments feel completely conventional, belying the revolutionary nature of their structure.

Construction method

Cross-Section of Stadthaus Murray Grove Cross-Section.jpeg
Cross-Section of Stadthaus

The building was assembled using a structural cross-laminated timber panel system. The timber panels are produced in Austria by KLH using Spruce planks glued together with a non-toxic adhesive. The waste timber is converted to fuel powering both the factory and local village. Each panel is prefabricated including cut-outs for windows and doors and routed service channels. As the panels arrived on site they were immediately craned into position and fixed in place. Four carpenters assembled the eight-storey structure in twenty-seven days. The speed of the construction in such a densely populated environment is especially relevant, as was the lack of noise and waste, creating far less intrusion on the local community than a traditional concrete frame construction.

A ‘platform construction’ configuration is used throughout this structure. Each floor is set on the walls below, and then another storey of walls is raised and so on up the building. Joints are secured with screws and angle plates. Stresses are generally very low throughout the structure and at points where cross-grain pressures are high, screws have been added to reinforce the timber locally. Progressive collapse is avoided by providing sufficient redundancy so that any single elements can be removed.[ citation needed ] Designing a building constructed from load bearing panels creates a number of opportunities. Any internal wall can become a party wall and have a significant portion removed from the surface area as openings. This simple flexibility allowed for different plan types up and down the building and an animated façade where windows were placed according to the best advantage.[ citation needed ]

Typically a new technology in construction provides a reduced volume of building material; lighter weights produce cheaper faster buildings. The impression of solidity once inside this building is evident, the interior spaces and the acoustic they give off affirm a sense of place and home.[ citation needed ]

Traditional trades and methods followed on once the structure of each floor was complete. The enthusiasm of the work force for the construction and the ease of the build was a benefit beyond anticipation. The building was completed in 49 weeks, estimated to be a saving of five months over a notional concrete frame construction and occupied ahead of programme in January 2009.[ citation needed ]

Sustainability

Internal Structure Murray Grove Internal Structure.jpeg
Internal Structure

Using a bulk timber panel system affects the carbon footprint of the building in three ways. Firstly, the production of cement produces 237 kg of carbon per tonne.[ citation needed ] The project's sustainability expert estimates that if this building were to be a concrete structure, it would contain approximately 950 cubic metres of concrete. This would require 285 tonnes of cement and would, therefore, produce approximately 67,500 kg of carbon.[ citation needed ]

Additionally, the production of steel produces 477 kg of carbon per tonne.{{cn} It is estimated that the building would, if built in reinforced concrete, require about 120 tonnes of steel, the production of which would have generated 57,250 kg of carbon.

901 cubic metres of timber have been used within the building. Timber absorbs carbon throughout its natural life and continues to store that carbon when cut. The fabric of Stadthaus stores over 186,000 kg of carbon. Thus, the chosen construction method has resulted in a reduction in the carbon load of the building of 67,500 + 57,250 + 186,000 = 310,750 kg of carbon. This is equivalent to over 310 tonnes of carbon. The estimated carbon dioxide produced in the generation of the energy for the building, including the transportation of the timber panels from Austria, is 10,000 kg/c/yr. This has been entirely offset by the building’s carbon saving for some 21 years.[ citation needed ]

Building high in timber

Concerns associated with timber buildings are predominantly related to acoustics and fire protection. Timber buildings are classified as poor in terms of their acoustic performance due to the light structure as compared to reinforced concrete and masonry. However, cross-laminated solid timber panels have a significantly higher density than timber frame buildings. They provide a solid structural core on which different, independent and separating layers can be added. The layer principal overcomes any acoustic or sound transfer issues. In Stadthaus an economic layering strategy of stud walls, floating floor build-ups and suspended ceilings, gave sound attenuation far in excess of building regulations (58 - 60db).[ citation needed ]

In a fire, a solid wall of timber benefits from the protection of a charred layer and therefore does not combust in the same way as a single stud. In Stadthaus, five-layer cross-laminated timber panels are used to obtain a fire protection that allows the structure to retain its integrity for at least 90 minutes. This is significantly longer than steel, which fails and buckles at high temperatures. The 90 minutes at Stadthaus have been achieved with the plasterboard finish – two layers of plasterboard provide 60 minutes with the final 30 minutes achieved by the calculation of charring rate of the KLH solid timber panels. Calculations by the project engineers however show that in fact the KLH panels comfortably achieve a 60-minute fire resistance period with the panel thicknesses used for this project so the design team has been slightly modest.[ citation needed ]

Regulations in Europe have meant there are no precedents for Stadthaus. [9] However, architectural and engineering methods in timber construction pioneered by Waugh Thistleton and Techniker are now accepted internationally.[ citation needed ] By gaining the necessary certificates from both NHBC and Building Research Establishment, both of which treated Stadthaus as a pilot scheme, the design team considers that timber panels are the building material of an environmentally conscious future.[ citation needed ]

Sample buildings

See also

Related Research Articles

Skyscraper High-rise building

A skyscraper is a large continuously habitable building having multiple floors. Modern sources currently define skyscrapers as being at least 100 metres or 150 metres in height, though there is no universally accepted definition. Historically, the term first referred to buildings with between 10 and 20 stories when these types of buildings began to be constructed in the 1880s. Skyscrapers may host offices, hotels, residential spaces, and retail spaces.

Plywood

Plywood is a material manufactured from thin layers or "plies" of wood veneer that are glued together with adjacent layers having their wood grain rotated up to 90 degrees to one another. It is an engineered wood from the family of manufactured boards which include medium-density fibreboard (MDF) and particle board (chipboard).

Floor Walking surface of a room

A floor is the bottom surface of a room or vehicle. Floors vary from simple dirt in a cave to many-layered surfaces made with modern technology. Floors may be stone, wood, bamboo, metal or any other material that can support the expected load.

Flooring is the general term for a permanent covering of a floor, or for the work of installing such a floor covering. Floor covering is a term to generically describe any finish material applied over a floor structure to provide a walking surface. Both terms are used interchangeably but floor covering refers more to loose-laid materials.

Engineered wood Range of derivative wood products engineered for uniform and predictable structural performance

Engineered wood, also called mass timber, composite wood, man-made wood, or manufactured board, includes a range of derivative wood products which are manufactured by binding or fixing the strands, particles, fibres, or veneers or boards of wood, together with adhesives, or other methods of fixation to form composite material. The panels vary in size but can range upwards of 64 by 8 feet and in the case of cross-laminated timber (CLT) can be of any thickness from a few inches to 16 inches or more. These products are engineered to precise design specifications, which are tested to meet national or international standards and provide uniformity and predictability in their structural performance. Engineered wood products are used in a variety of applications, from home construction to commercial buildings to industrial products. The products can be used for joists and beams that replace steel in many building projects. The term mass timber describes a group of building materials that can replace concrete assemblies. Broad-base adoption of mass timber and their substitution for steel and concrete in new mid-rise construction projects over the next few decades has the potential of turning timber buildings into a global carbon sink, which could help mitigate climate change.

Foundation (engineering) Lowest and supporting layer of a structure

In engineering, a foundation is the element of a structure which connects it to the ground, and transfers loads from the structure to the ground. Foundations are generally considered either shallow or deep. Foundation engineering is the application of soil mechanics and rock mechanics in the design of foundation elements of structures.

Glued laminated timber

Glued laminated timber, also abbreviated glulam, is a type of structural engineered wood product constituted by layers of dimensional lumber bonded together with durable, moisture-resistant structural adhesives. In North America, the material providing the laminations is termed laminating stock or lamstock.

This page is a list of construction topics.

Natural building

A natural building involves a range of building systems and materials that place major emphasis on sustainability. Ways of achieving sustainability through natural building focus on durability and the use of minimally processed, plentiful or renewable resources, as well as those that, while recycled or salvaged, produce healthy living environments and maintain indoor air quality. Natural building tends to rely on human labor, more than technology. As Michael G. Smith observes, it depends on "local ecology, geology and climate; on the character of the particular building site, and on the needs and personalities of the builders and users."

Framing (construction) In construction, is the fitting together of pieces to give a structure support and shape

Framing, in construction, is the fitting together of pieces to give a structure support and shape. Framing materials are usually wood, engineered wood, or structural steel. The alternative to framed construction is generally called mass wall construction, where horizontal layers of stacked materials such as log building, masonry, rammed earth, adobe, etc. are used without framing.

Formwork

Formwork is temporary or permanent molds into which concrete or similar materials are poured. In the context of concrete construction, the falsework supports the shuttering molds.

Precast concrete

Precast concrete is a construction product produced by casting concrete in a reusable mold or "form" which is then cured in a controlled environment, transported to the construction site and lifted into place. In contrast, standard concrete is poured into site-specific forms and cured on site. Precast stone is distinguished from precast concrete using a fine aggregate in the mixture, so the final product approaches the appearance of naturally occurring rock or stone. More recently expanded polystyrene is being used as the cores to precast wall panels. This is lightweight and has better thermal insulation.

Hollow-core slab

A hollow core slab, also known as a voided slab, hollow core plank or simply a concrete plank is a precast slab of prestressed concrete typically used in the construction of floors in multi-story apartment buildings. The slab has been especially popular in countries where the emphasis of home construction has been on precast concrete, including Northern Europe and former socialist countries of Eastern Europe. Precast concrete popularity is linked with low-seismic zones and more economical constructions because of fast building assembly, lower self weight, etc. Precast hollow-core elements is also known as the most sustainable floor/roof system and has far smaller CO2 footprint than even cross-laminated timber slabs.

Cross-laminated timber

Cross-laminated timber (CLT) is a wood panel product made from gluing together layers of solid-sawn lumber, i.e., lumber cut from a single log. Each layer of boards is usually oriented perpendicular to adjacent layers and glued on the wide faces of each board, usually in a symmetric way so that the outer layers have the same orientation. An odd number of layers is most common, but there are configurations with even numbers as well. Regular timber is an anisotropic material, meaning that the physical properties change depending on the direction at which the force is applied. By gluing layers of wood at right angles, the panel is able to achieve better structural rigidity in both directions. It is similar to plywood but with distinctively thicker laminations.

Prefabs in the United Kingdom

Prefabs were a major part of the delivery plan to address the United Kingdom's post–Second World War housing shortage. They were envisaged by war-time prime minister Winston Churchill in March 1944, and legally outlined in the Housing Act 1944.

Brettstapel

Brettstapel, also known as dowellam, is a massive timber construction system, fabricated exclusively from softwood timber posts connected with hardwood timber dowels. It is a relatively simple method of construction that exploits low grade timber, not normally suitable for use in construction, to form load bearing solid timber wall, floor and roof panels.

WHH GT 18

WHH GT 18 is a standard residential high-rise building type in East Berlin. It was developed by architects Helmut Stingl and Joachim Seifert between 1969 and 1971 using large panel construction for mixed-use housing in Berlin.

Carbon12

Carbon12 is a wooden building in Portland, Oregon's Eliot neighborhood, in the United States. The eight-story structure built with Oregon-made cross-laminated timber (CLT) became the tallest wood building in the United States upon its completion.

Brock Commons Tallwood House is an 18-storey student residence at the Point Grey Campus of the University of British Columbia (UBC) in Canada. At the time it was opened, it was the tallest mass timber structure in the world.

References

1. Marcus Fairs (June 2007). "Timber tower by Waugh Thistleton". Dezeen.

2. Yates, Megan et al., "Design of an 8 storey Residential Tower from KLH Cross Laminated Solid Timber Panels", written for World Conference for Timber Engineering, Japan 2008

3. European technical approval, “KLH solid wood slabs”, ETA-06/0138, issued by OIB – Österreichisches Institut für Bautechnik, Wien.

4. Office of the Deputy Prime Minister, “A-3 Disproportionate Collapse”, The Building Regulations 2000, Approved Document A, pp. 39–43.

5. Milner M., Chiltern Clarke Bond, “Design Guidance for Disproportionate Collapse”, UK Timber Frame Association, Number 3, March 2005.

6. Krapfenbauer T. J., “Bautabellen”, Verlag Jugend & Volk GmbH, Wien, edition 2006/07.

  1. "Stadhaus". Skyscraper Center. CTBUH. Retrieved 2017-06-01.
  2. In 2007, a 7-story residential building in Berlin claimed to be the tallest wooden house, cf. http://www.e3berlin.de/holz/
  3. Waugh Thistleton
  4. Techniker
  5. KLH
  6. Planning, building and the environment: Building Regulations
  7. http://www.mht.co.uk/
  8. ? questionable, see above link to the Berlin building

Further reading

Coordinates: 51°31′51″N0°05′22″W / 51.5308°N 0.0894°W / 51.5308; -0.0894