Stardust@home

Last updated
Stardust@home logo Logo Stardust@Home.png
Stardust@home logo

Stardust@home is a citizen science project that encourages volunteers to search images for tiny interstellar dust impacts. The project began providing data for analysis on August 1, 2006.

Contents

From February to May 2000 and from August to December 2002, the Stardust spacecraft exposed its "Stardust Interstellar Dust Collector" (SIDC), a set of aerogel blocks about 0.1 m2 (1 ft²) in total size, to interstellar dust. The collector media consist of 130 blocks of 1 and 3 cm thick silica-based aerogel mounted in aluminum cells. [1]

In order to spot impacts of interstellar dust, just over 700,000 individual fields of the aerogel will have to be visually inspected using large magnification. [2] Each field, which is composed of 40 images, will thus be termed a "focus movie". Stardust@home will try to achieve this by distributing the work among volunteers. Unlike distributed computing projects, it does not try to harness the processing power of many computers. It uses them only to distribute and present the tasks to humans. This approach is similar to the earlier Clickworkers project to find Martian craters.

Participants must pass a test to qualify to register to participate. After registering and passing the test, participants have access to the web-based "virtual microscope" which allows them to search each field for interstellar dust impacts by focusing up and down with a focus control.

As an incentive for volunteers, the first five phases of Stardust@home allowed the first individual to discover a particular interstellar dust particle to name it. Also, the discoverer could appear as a co-author on any scientific paper announcing the discovery of the particle. As of 2023, numerous peer-reviewed papers summarizing the results of the Stardust Interstellar Preliminary Examination (ISPE) that include these volunteers as co-authors have been published in Meteoritics & Planetary Science .

This focus movie shows what a particle track in the stardust aerogel might look like. The focus movie can be viewed in the Stardust Search Tutorial with the "virtual microscope". The tutorials use tracks of extraterrestrial particles that were captured in the ODCE collector on the Russian space station Mir and tracks of submicrometre dust particles shot into aerogel at 20 km/s using a Van de Graaff dust accelerator in Heidelberg, Germany. Real interstellar dust tracks may appear different from these. They may be deeper or shallower, wider or narrower. Focus movie.gif
This focus movie shows what a particle track in the stardust aerogel might look like. The focus movie can be viewed in the Stardust Search Tutorial with the "virtual microscope". The tutorials use tracks of extraterrestrial particles that were captured in the ODCE collector on the Russian space station Mir and tracks of submicrometre dust particles shot into aerogel at 20 km/s using a Van de Graaff dust accelerator in Heidelberg, Germany. Real interstellar dust tracks may appear different from these. They may be deeper or shallower, wider or narrower.

Phases

Stardust@home has been divided into six phases. Phase I became publicly available on August 1, 2006, Phase II in August 2007, Phase III in March 2010, Phase IV in July 2011, Phase V in May 2012, and Phase VI in June 2013. [3]

Phase VI includes over 30,000 new "movies" representing eight aerogel tiles. The scoring method was also upgraded and, unlike the other phases, Stardust@home can no longer guarantee first finders of particles will be listed as co-authors on any scientific papers written about the discoveries. [4]

See also

Related Research Articles

<span class="mw-page-title-main">Interstellar medium</span> Matter and radiation in the space between the star systems in a galaxy

In astronomy, the interstellar medium (ISM) is the matter and radiation that exist in the space between the star systems in a galaxy. This matter includes gas in ionic, atomic, and molecular form, as well as dust and cosmic rays. It fills interstellar space and blends smoothly into the surrounding intergalactic space. The energy that occupies the same volume, in the form of electromagnetic radiation, is the interstellar radiation field. Although the density of atoms in the ISM is usually far below that in the best laboratory vacuums, the mean free path between collisions is short compared to typical interstellar lengths, so on these scales the ISM behaves as a gas (more precisely, as a plasma: it is everywhere at least slightly ionized), responding to pressure forces, and not as a collection of non-interacting particles.

<span class="mw-page-title-main">Astrochemistry</span> Study of molecules in the Universe and their reactions

Astrochemistry is the study of the abundance and reactions of molecules in the universe, and their interaction with radiation. The discipline is an overlap of astronomy and chemistry. The word "astrochemistry" may be applied to both the Solar System and the interstellar medium. The study of the abundance of elements and isotope ratios in Solar System objects, such as meteorites, is also called cosmochemistry, while the study of interstellar atoms and molecules and their interaction with radiation is sometimes called molecular astrophysics. The formation, atomic and chemical composition, evolution and fate of molecular gas clouds is of special interest, because it is from these clouds that solar systems form.

<span class="mw-page-title-main">Geoffrey A. Landis</span> American aerospace engineer (born 1955)

Geoffrey Alan Landis is an American aerospace engineer and author, working for the National Aeronautics and Space Administration (NASA) on planetary exploration, interstellar propulsion, solar power and photovoltaics. He holds nine patents, primarily in the field of improvements to solar cells and photovoltaic devices and has given presentations and commentary on the possibilities for interstellar travel and construction of bases on the Moon, Mars, and Venus.

<i>Giotto</i> (spacecraft) Halleys comet fly-by space mission

Giotto was a European robotic spacecraft mission from the European Space Agency. The spacecraft flew by and studied Halley's Comet and in doing so became the first spacecraft to make close up observations of a comet. On 13 March 1986, the spacecraft succeeded in approaching Halley's nucleus at a distance of 596 kilometers. It was named after the Early Italian Renaissance painter Giotto di Bondone. He had observed Halley's Comet in 1301 and was inspired to depict it as the star of Bethlehem in his painting Adoration of the Magi in the Scrovegni Chapel.

<i>Stardust</i> (spacecraft) Fourth mission of the Discovery program; sample return from the periodic comet Wild 2

Stardust was a 385-kilogram robotic space probe launched by NASA on 7 February 1999. Its primary mission was to collect dust samples from the coma of comet Wild 2, as well as samples of cosmic dust, and return them to Earth for analysis. It was the first sample return mission of its kind. En route to comet Wild 2, it also flew by and studied the asteroid 5535 Annefrank. The primary mission was successfully completed on 15 January 2006 when the sample return capsule returned to Earth.

<span class="mw-page-title-main">81P/Wild</span> Periodic comet with six-year orbit

Comet 81P/Wild, also known as Wild 2, is a comet named after Swiss astronomer Paul Wild, who discovered it on January 6, 1978, using a 40-cm Schmidt telescope at Zimmerwald, Switzerland.

<span class="mw-page-title-main">Interplanetary medium</span> Material which fills the Solar System

The interplanetary medium (IPM) or interplanetary space consists of the mass and energy which fills the Solar System, and through which all the larger Solar System bodies, such as planets, dwarf planets, asteroids, and comets, move. The IPM stops at the heliopause, outside of which the interstellar medium begins. Before 1950, interplanetary space was widely considered to either be an empty vacuum, or consisting of "aether".

<span class="mw-page-title-main">Cosmic dust</span> Dust floating in space

Cosmic dust – also called extraterrestrial dust, space dust, or star dust – is dust that occurs in outer space or has fallen onto Earth. Most cosmic dust particles measure between a few molecules and 0.1 mm (100 μm), such as micrometeoroids. Larger particles are called meteoroids. Cosmic dust can be further distinguished by its astronomical location: intergalactic dust, interstellar dust, interplanetary dust, and circumplanetary dust. There are several methods to obtain space dust measurement.

The interplanetary dust cloud, or zodiacal cloud, consists of cosmic dust that pervades the space between planets within planetary systems, such as the Solar System. This system of particles has been studied for many years in order to understand its nature, origin, and relationship to larger bodies. There are several methods to obtain space dust measurement.

<span class="mw-page-title-main">Sample-return mission</span> Spacecraft mission

A sample-return mission is a spacecraft mission to collect and return samples from an extraterrestrial location to Earth for analysis. Sample-return missions may bring back merely atoms and molecules or a deposit of complex compounds such as loose material and rocks. These samples may be obtained in a number of ways, such as soil and rock excavation or a collector array used for capturing particles of solar wind or cometary debris. Nonetheless, concerns have been raised that the return of such samples to planet Earth may endanger Earth itself.

<span class="mw-page-title-main">Peter Tsou</span>

Peter Tsou has been employed as a principal science staff member at the Jet Propulsion Laboratory (JPL) of the California Institute of Technology for the past 34 years. Tsou's research primarily centers around the utilization of aerogel in space exploration.

Tony McDonnell is a Professor (Emeritus) of Planetary and Space Sciences. Specialising in space science and a recognised authority in cosmic dust, he was Professor of Space Sciences at the University of Kent and Professor of Planetary and Space Sciences at the Open University.

<span class="mw-page-title-main">Sample Collection for Investigation of Mars</span> Concept for a Mars air and dust sample return

The Sample Collection for Investigation of Mars(SCIM) is a mission concept for a Mars air and dust sample return. It was a semi-finalist at the Mars Scout Program along with four other missions in December 2002. The SCIM mission would be designed to skim through the Mars atmosphere without landing or entering orbit. It would collect samples in an aerogel and take them back to Earth on a free-return trajectory.

<span class="mw-page-title-main">Extraterrestrial materials</span> Natural objects that originated in outer space

Extraterrestrial material refers to natural objects now on Earth that originated in outer space. Such materials include cosmic dust and meteorites, as well as samples brought to Earth by sample return missions from the Moon, asteroids and comets, as well as solar wind particles.

Eberhard Grün is a German planetary scientist who specialized in cosmic dust research. He is an active emeritus at the Max Planck Institute for Nuclear Physics (MPIK), Heidelberg (Germany), research associate at the Laboratory for Atmospheric and Space Physics (LASP) in Boulder (Colorado), and was a professor at the University of Heidelberg until his retirement in 2007. Eberhard Grün has had a leading role in international cosmic dust science for over 40 years.

<span class="mw-page-title-main">Donald D. Clayton</span> American astrophysicist

Donald Delbert Clayton is an American astrophysicist whose most visible achievement was the prediction from nucleosynthesis theory that supernovae are intensely radioactive. That earned Clayton the NASA Exceptional Scientific Achievement Medal (1992) for “theoretical astrophysics related to the formation of (chemical) elements in the explosions of stars and to the observable products of these explosions”. Supernovae thereafter became the most important stellar events in astronomy owing to their profoundly radioactive nature. Not only did Clayton discover radioactive nucleosynthesis during explosive silicon burning in stars but he also predicted a new type of astronomy based on it, namely the associated gamma-ray line radiation emitted by matter ejected from supernovae. That paper was selected as one of the fifty most influential papers in astronomy during the twentieth century for the Centennial Volume of the American Astronomical Society. He gathered support from influential astronomers and physicists for a new NASA budget item for a gamma-ray-observatory satellite, achieving successful funding for Compton Gamma Ray Observatory. With his focus on radioactive supernova gas Clayton discovered a new chemical pathway causing carbon dust to condense there by a process that is activated by the radioactivity.

Life Investigation For Enceladus (LIFE) was a proposed astrobiology mission concept that would capture icy particles from Saturn's moon Enceladus and return them to Earth, where they could be studied in detail for signs of life such as biomolecules.

<span class="mw-page-title-main">Tanpopo mission</span> 2015–18 ISS astrobiology experiment

The Tanpopo mission is an orbital astrobiology experiment investigating the potential interplanetary transfer of life, organic compounds, and possible terrestrial particles in the low Earth orbit. The purpose is to assess the panspermia hypothesis and the possibility of natural interplanetary transport of microbial life as well as prebiotic organic compounds.

<span class="mw-page-title-main">Aerogel</span> Synthetic ultralight solid material

Aerogels are a class of synthetic porous ultralight material derived from a gel, in which the liquid component for the gel has been replaced with a gas, without significant collapse of the gel structure. The result is a solid with extremely low density and extremely low thermal conductivity. Aerogels can be made from a variety of chemical compounds. Silica aerogels feel like fragile expanded polystyrene to the touch, while some polymer-based aerogels feel like rigid foams.

<span class="mw-page-title-main">Space dust measurement</span> Space dust measurements

Space dust measurement refers to the study of small particles of extraterrestrial material, known as micrometeoroids or interplanetary dust particles (IDPs), that are present in the Solar System. These particles are typically of micrometer to sub-millimeter size and are composed of a variety of materials including silicates, metals, and carbon compounds. The study of space dust is important as it provides insight into the composition and evolution of the Solar System, as well as the potential hazards posed by these particles to spacecraft and other space-borne assets. The measurement of space dust requires the use of advanced scientific techniques such as secondary ion mass spectrometry (SIMS), optical and atomic force microscopy (AFM), and laser-induced breakdown spectroscopy (LIBS) to accurately characterize the physical and chemical properties of these particles.

References

  1. "Dust Collector Grid With Aerogel". NASA . Retrieved 2006-03-08.
  2. "Stardust@home Update : Scanning, Testing, and Calibration Movies". The Planetary Society. Archived from the original on 2008-08-28. Retrieved 2008-07-26.
  3. "Timeline". Stardust@Home. Retrieved September 14, 2021.
  4. "Stardust@home Phase VI Launching in June 2013". Stardust@Home Blog. Retrieved June 20, 2013.