Subclade

Last updated

In genetics, a subclade is a subgroup of a haplogroup. [1]

Contents

Naming convention

Although human mitochondrial DNA (mtDNA) and Y chromosome DNA (Y-DNA) haplogroups and subclades are named in a similar manner, their names belong to completely separate systems. [2]

mtDNA

mtDNA haplogroups are defined by the presence of a series of single-nucleotide polymorphism (SNP) markers in the hypervariable regions and the coding region of mitochondrial DNA. They are named with the capital letters A through Z, with further subclades named using numbers and lower case letters. [2] [3] [4]

Y-DNA

Y-DNA haplogroups are defined by the presence of a series of SNP markers on the Y chromosome. Subclades are defined by a terminal SNP, the SNP furthest down in the Y chromosome phylogenetic tree. [5]

Human Y-DNA

The Y Chromosome Consortium (YCC) developed a system of naming major human Y-DNA haplogroups with the capital letters A through T, with further subclades named using numbers and lower case letters (YCC longhand nomenclature). YCC shorthand nomenclature names Y-DNA haplogroups and their subclades with the first letter of the major Y-DNA haplogroup followed by a dash and the name of the defining terminal SNP. [6] Y-DNA haplogroup nomenclature is changing over time to accommodate the increasing number of SNPs being discovered and tested, and the resulting expansion of the Y chromosome phylogenetic tree. This change in nomenclature has resulted in inconsistent nomenclature being used in different sources. [7] This inconsistency, and increasingly cumbersome longhand nomenclature, has prompted a move towards using the simpler shorthand nomenclature.

See also

Related Research Articles

In human genetics, the Y-chromosomal most recent common ancestor is the patrilineal most recent common ancestor (MRCA) from whom all currently living humans are descended. He is the most recent male from whom all living humans are descended through an unbroken line of their male ancestors. The term Y-MRCA reflects the fact that the Y chromosomes of all currently living human males are directly derived from the Y chromosome of this remote ancestor. The analogous concept of the matrilineal most recent common ancestor is known as "Mitochondrial Eve", the most recent woman from whom all living humans are descended matrilineally. As with "Mitochondrial Eve", the title of "Y-chromosomal Adam" is not permanently fixed to a single individual, but can advance over the course of human history as paternal lineages become extinct.

A genealogical DNA test is a DNA-based genetic test used in genetic genealogy that looks at specific locations of a person's genome in order to find or verify ancestral genealogical relationships, or to estimate the ethnic mixture of an individual. Since different testing companies use different ethnic reference groups and different matching algorithms, ethnicity estimates for an individual vary between tests, sometimes dramatically.

<span class="mw-page-title-main">Haplogroup</span> Group of similar haplotypes

A haplotype is a group of alleles in an organism that are inherited together from a single parent, and a haplogroup is a group of similar haplotypes that share a common ancestor with a single-nucleotide polymorphism mutation. More specifically, a haplotype is a combination of alleles at different chromosomal regions that are closely linked and that tend to be inherited together. As a haplogroup consists of similar haplotypes, it is usually possible to predict a haplogroup from haplotypes. Haplogroups pertain to a single line of descent. As such, membership of a haplogroup, by any individual, relies on a relatively small proportion of the genetic material possessed by that individual.

<span class="mw-page-title-main">Haplogroup J-M172</span> Human Y-chromosome DNA haplogroup

In human genetics, Haplogroup J-M172 or J2 is a Y-chromosome haplogroup which is a subclade (branch) of haplogroup J-M304. Haplogroup J-M172 is common in modern populations in Western Asia, Central Asia, South Asia, Southern Europe, Northwestern Iran and North Africa. It is thought that J-M172 may have originated between the Caucasus, Anatolia and/or Western Iran.

<span class="mw-page-title-main">Haplogroup J (Y-DNA)</span> Human Y-chromosome DNA haplogroup

Haplogroup J-M304, also known as J, is a human Y-chromosome DNA haplogroup. It is believed to have evolved in Western Asia. The clade spread from there during the Neolithic, primarily into North Africa, the Horn of Africa, the Socotra Archipelago, the Caucasus, Europe, Anatolia, Central Asia, South Asia, and Southeast Asia.

Haplogroup J is a human mitochondrial DNA (mtDNA) haplogroup. The clade derives from the haplogroup JT, which also gave rise to haplogroup T. Within the field of medical genetics, certain polymorphisms specific to haplogroup J have been associated with Leber's hereditary optic neuropathy.

Haplogroup A is a human Y-chromosome DNA haplogroup, which includes all living human Y chromosomes. Bearers of extant sub-clades of haplogroup A are almost exclusively found in Africa, in contrast with haplogroup BT, bearers of which participated in the Out of Africa migration of early modern humans. The known branches of haplogroup A are A00, A0, A1a, and A1b1; these branches are only very distantly related, and are not more closely related to each other than they are to haplogroup BT.

Haplogroup E-V38, also known as E1b1a-V38, is a major human Y-chromosome DNA haplogroup. E-V38 is primarily distributed in Africa. E-V38 has two basal branches, E-M329 and E-M2. E-M329 is a subclade mostly found in East Africa. E-M2 is the predominant subclade in West Africa, Central Africa, Southern Africa, and the region of African Great Lakes; it also occurs at moderate frequencies in North Africa, West Asia, and Southern Europe.

<span class="mw-page-title-main">Haplogroup F-M89</span> Human Y chromosome DNA grouping indicating common ancestry

Haplogroup F, also known as F-M89 and previously as Haplogroup FT, is a very common Y-chromosome haplogroup. The clade and its subclades constitute over 90% of paternal lineages outside of Africa.

<span class="mw-page-title-main">Haplogroup M-P256</span> Human Y chromosome DNA grouping common in New Guinea

Haplogroup M, also known as M-P256 and Haplogroup K2b1b is a Y-chromosome DNA haplogroup. M-P256 is a descendant haplogroup of Haplogroup K2b1, and is believed to have first appeared between 32,000 and 47,000 years ago.

<span class="mw-page-title-main">Human Y-chromosome DNA haplogroup</span> Human DNA groupings

In human genetics, a human Y-chromosome DNA haplogroup is a haplogroup defined by mutations in the non-recombining portions of DNA from the male-specific Y chromosome. Many people within a haplogroup share similar numbers of short tandem repeats (STRs) and types of mutations called single-nucleotide polymorphisms (SNPs).

Haplogroup I-M253, also known as I1, is a Y chromosome haplogroup. The genetic markers confirmed as identifying I-M253 are the SNPs M253,M307.2/P203.2, M450/S109, P30, P40, L64, L75, L80, L81, L118, L121/S62, L123, L124/S64, L125/S65, L157.1, L186, and L187. It is a primary branch of Haplogroup I-M170 (I*).

Haplogroup E-P147 is a human Y-chromosome DNA haplogroup. Haplogroup E-P147, along with the less common haplogroup E-M75, is one of the two main branches of the older haplogroup E-M96. The E-P147 clade is commonly observed throughout Africa and is divided into two subclades: the less common, haplogroup E-M132, and the more common, haplogroup E-P177.

Haplogroup E-P177 is a human Y-chromosome DNA haplogroup. E-P177 has two known subclades, which are haplogroup E-P2 and haplogroup E-P75.

In human population genetics, Y-Chromosome haplogroups define the major lineages of direct paternal (male) lines back to a shared common ancestor in Africa. Men in the same haplogroup share a set of differences, or markers, on their Y-Chromosome, which distinguish them from men in other haplogroups. These UEPs, or markers used to define haplogroups, are SNP mutations. Y-Chromosome Haplogroups all form "family trees" or "phylogenies", with both branches or sub-clades diverging from a common haplogroup ancestor, and also with all haplogroups themselves linked into one family tree which traces back ultimately to the most recent shared male line ancestor of all men alive today, called in popular science Y Chromosome Adam.

mt-SNP is a single nucleotide polymorphism on the mitochondrial chromosome. mt-SNPs are often used in maternal genealogical DNA testing.

Haplogroup Q-M323 is a subclade of Y-DNA Haplogroup Q-M346. Haplogroup Q-M323 is defined by the presence of the M323 Single Nucleotide Polymorphism (SNP).

Haplogroup A-L1085, also known as haplogroup A0-T is a human Y-DNA haplogroup. It is part of the paternal lineage of almost all humans alive today. The SNP L1085 has played two roles in population genetics: firstly, most Y-DNA haplogroups have diverged from it and; secondly, it defines the undiverged basal clade A-L1085*.

<span class="mw-page-title-main">Haplogroup E-M329</span> Human Y-chromosome DNA haplogroup

Haplogroup E-M329, also known as E1b1a2, is a human Y-chromosome DNA haplogroup. E-M329 is mostly found in East Africa.

<span class="mw-page-title-main">Haplogroup E-M2</span> Human Y-chromosome DNA haplogroup

Haplogroup E-M2, also known as E1b1a1-M2, is a human Y-chromosome DNA haplogroup. E-M2 is primarily distributed within Africa followed by West Asia. More specifically, E-M2 is the predominant subclade in West Africa, Central Africa, Southern Africa, and the region of the African Great Lakes; it also occurs at moderate frequencies in North Africa, and the Middle East. E-M2 has several subclades, but many of these subhaplogroups are included in either E-L485 or E-U175. E-M2 is especially common among indigenous Africans who speak Niger-Congo languages, and was spread to Southern Africa and East Africa through the Bantu expansion.

References

  1. Caselli, Giovanni (21 July 2022). Etruria and the Origins of the Etruscans. Cambridge Scholars Publishing. p. 33. ISBN   978-1-5275-8475-4.
  2. 1 2 "Understanding Results: mtDNA: How are mitochondrial DNA (mtDNA) Haplogroups named?". Family Tree DNA. Retrieved 3 April 2013.
  3. "About mtDNA Haplogroups (Maternal Ancient Ancestry)". DNA Ancestry Project. Retrieved 1 April 2013.[ permanent dead link ]
  4. "Comparison of Y-DNA and mtDNA haplogroups". DNA Ancestry Project. Retrieved 1 April 2013.[ permanent dead link ]
  5. "myFTDNA 2.0 User Guide: Y-DNA: What is the Y-DNA - Matches page?". Family Tree DNA. Retrieved 31 March 2013. A terminal SNP determines the terminal (final) subbranch on the Y-DNA Tree to which someone belongs.
  6. "Understanding Results: Y-DNA Single Nucleotide Polymorphism (SNP): How are haplogroups and their subclades named?". Family Tree DNA. Retrieved 31 March 2013.
  7. "Understanding Haplogroups: How are the haplogroups named?". Family Tree DNA. Archived from the original on 21 June 2012. Retrieved 31 March 2013.