Sulfonium-based oxidation of alcohols to aldehydes

Last updated

Sulfonium-based oxidations of alcohols to aldehydes summarizes a group of organic reactions that transform a primary alcohol to the corresponding aldehyde (and a secondary alcohol to the corresponding ketone). Selective oxidation of alcohols to aldehydes requires circumventing over-oxidation to the carboxylic acid. One popular approach are methods that proceed through intermediate alkoxysulfonium species (RO−SMe+
2
X-
, e.g. compound 6) as detailed here. Since most of these methods employ dimethylsulfoxide (DMSO) as oxidant and generate dimethylsulfide, these are often colloquially summarized as DMSO-oxidations. Conceptually, generating an aldehyde and dimethylsulfide from an alcohol and DMSO requires a dehydrating agent for removal of H2O, ideally an electrophile simultaneously activating DMSO. In contrast, methods generating the sulfonium intermediate from dimethylsulfide do not require a dehydrating agent. Closely related are oxidations mediated by dimethyl selenoxide and by dimethyl selenide. [1]

Contents

In comparisons, sulfonium-based methods are popular because reactions are efficient (high yields, comparably fast, no over-oxidation, few side reactions, reproducible results), reaction conditions are mild (low temperature, no strong acids or bases), reactions are operationally simple (no specialized equipment or uncommon and/or costly reagents necessary, byproducts often easily separated, tolerant of oxygen and moisture,) and they generally avoid highly toxic starting materials and toxic waste disposal. However, the reactions are not too popular with many undergraduate chemistry students in the laboratory since the common byproduct dimethylsulfide is a strong odorant, reminiscent of fouling eggs, that requires a well-ventilated fume hood. Other drawbacks might include excess of base, handling of the dehydrating agent, limited choice of solvent or side reactions at elevated temperature, e.g. Pummerer rearrangement or elimination of the sulfonium intermediate to the reactive H2C=(S+)-CH3-species that form methylthiomethyl ethers with alcohols. In consequence this means that the activity of the oxidation can not be tuned at will by increasing the reaction temperature, e.g. to force oxidation of an unreactive alcohol.

Common alternatives to these sulfonium-based methods are oxidations with

Categories

The sulfonium oxidations can be categorized into two groups: The methods discovered earliest rely on activated alcohols like alkyl tosylates (Kornblum oxidation) [2] or alkyl chloroformates (from reaction of alcohols with phosgene: Barton-Kornblum) [3] that react as electrophiles when treated with DMSO, liberating an oxygenated leaving group (e.g. OTs−). However, the additional step for pre-activation of the alcohol and sometimes harsh reaction conditions for the nucleophilic displacement proved less convenient. Therefore, methods generating activated sulfoxides have been developed later. Depicted below is the activated sulfoxide generated during Swern oxidation 4 reacting with a secondary alcohol 5 to form alkoxysulfonium species 6.

The mechanism of the Swern oxidation. Swern Oxidation Mechanism.png
The mechanism of the Swern oxidation.

These activated sulfoxides react as electrophiles when treated with an alcohol, expelling a leaving group that might simultaneously function as counter-ion to the alkoxysulfonium species (RO−SMe+
2
) generated. Upon deprotonation – usually assisted by a mild base like triethylamine – the alkoxysulfonium species decomposes, yielding the aldehyde and dimethylsulfide. The latter collection contains popular oxidations like

and also includes Albright-Goldman, Albright-Onodera (DMSO/P2O5), TFAA/DMSO (Swern) and Me2S/Cl2. Recently, SO2F2 has been proposed for generating the activated sulfoxide from DMSO. [4]

See also

Related Research Articles

<span class="mw-page-title-main">Ketone</span> Organic compounds of the form >C=O

In organic chemistry, a ketone is a functional group with the structure R−C(=O)−R', where R and R' can be a variety of carbon-containing substituents. Ketones contain a carbonyl group −C(=O)−. The simplest ketone is acetone, with the formula (CH3)2CO. Many ketones are of great importance in biology and in industry. Examples include many sugars (ketoses), many steroids, and the solvent acetone.

<span class="mw-page-title-main">Aldehyde</span> Organic compound containing the functional group R−CH=O

In organic chemistry, an aldehyde is an organic compound containing a functional group with the structure R−CH=O. The functional group itself can be referred to as an aldehyde but can also be classified as a formyl group. Aldehydes are a common motif in many chemicals important in technology and biology.

In organic chemistry, the Swern oxidation, named after Daniel Swern, is a chemical reaction whereby a primary or secondary alcohol is oxidized to an aldehyde or ketone using oxalyl chloride, dimethyl sulfoxide (DMSO) and an organic base, such as triethylamine. It is one of the many oxidation reactions commonly referred to as 'activated DMSO' oxidations. The reaction is known for its mild character and wide tolerance of functional groups.

<span class="mw-page-title-main">Pyridinium chlorochromate</span> Chemical compound

Pyridinium chlorochromate (PCC) is a yellow-orange salt with the formula [C5H5NH]+[CrO3Cl]. It is a reagent in organic synthesis used primarily for oxidation of alcohols to form carbonyls. A variety of related compounds are known with similar reactivity. PCC offers the advantage of the selective oxidation of alcohols to aldehydes or ketones, whereas many other reagents are less selective.

The Kornblum oxidation, named after Nathan Kornblum, is an organic oxidation reaction that converts alkyl halides and tosylates into carbonyl compounds.

<span class="mw-page-title-main">Dess–Martin periodinane</span> Chemical reagent

Dess–Martin periodinane (DMP) is a chemical reagent used in the Dess–Martin oxidation, oxidizing primary alcohols to aldehydes and secondary alcohols to ketones. This periodinane has several advantages over chromium- and DMSO-based oxidants that include milder conditions, shorter reaction times, higher yields, simplified workups, high chemoselectivity, tolerance of sensitive functional groups, and a long shelf life. However, use on an industrial scale is made difficult by its cost and its potentially explosive nature. It is named after the American chemists Daniel Benjamin Dess and James Cullen Martin who developed the reagent in 1983. It is based on IBX, but due to the acetate groups attached to the central iodine atom, DMP is much more reactive than IBX and is much more soluble in organic solvents.

<span class="mw-page-title-main">Organic redox reaction</span> Redox reaction that takes place with organic compounds

Organic reductions or organic oxidations or organic redox reactions are redox reactions that take place with organic compounds. In organic chemistry oxidations and reductions are different from ordinary redox reactions, because many reactions carry the name but do not actually involve electron transfer. Instead the relevant criterion for organic oxidation is gain of oxygen and/or loss of hydrogen, respectively.

<span class="mw-page-title-main">2-Iodoxybenzoic acid</span> Chemical compound

2-Iodoxybenzoic acid (IBX) is an organic compound used in organic synthesis as an oxidizing agent. This periodinane is especially suited to oxidize alcohols to aldehydes. IBX is prepared from 2-iodobenzoic acid, potassium bromate, and sulfuric acid. Frigerio and co-workers have also demonstrated, in 1999 that potassium bromate may be replaced by commercially available Oxone. One of the main drawbacks of IBX is its limited solubility; IBX is insoluble in many common organic solvents. In the past, it was believed that IBX was shock sensitive, but it was later proposed that samples of IBX were shock sensitive due to the residual potassium bromate left from its preparation. Commercial IBX is stabilized by carboxylic acids such as benzoic acid and isophthalic acid.

The Pfitzner–Moffatt oxidation, sometimes referred to as simply the Moffatt oxidation, is a chemical reaction for the oxidation of primary and secondary alcohols to aldehydes and ketones, respectively. The oxidant is a combination of dimethyl sulfoxide (DMSO) and dicyclohexylcarbodiimide (DCC). The reaction was first reported by J. Moffatt and his student K. Pfitzner in 1963.

The Corey–Kim oxidation is an oxidation reaction used to synthesise aldehydes and ketones from primary and secondary alcohols. It is named for American chemist and Nobel Laureate Elias James Corey and Korean-American chemist Choung Un Kim.

Oppenauer oxidation, named after Rupert Viktor Oppenauer, is a gentle method for selectively oxidizing secondary alcohols to ketones.

In organic chemistry, the Ei mechanism, also known as a thermal syn elimination or a pericyclic syn elimination, is a special type of elimination reaction in which two vicinal (adjacent) substituents on an alkane framework leave simultaneously via a cyclic transition state to form an alkene in a syn elimination. This type of elimination is unique because it is thermally activated and does not require additional reagents, unlike regular eliminations, which require an acid or base, or would in many cases involve charged intermediates. This reaction mechanism is often found in pyrolysis.

<span class="mw-page-title-main">Oxidation of alcohols to carbonyl compounds</span> Chemical reaction

The oxidation of alcohols to carbonyls is an important oxidation reaction in organic chemistry. This only occurs with primary and secondary alcohols.

<span class="mw-page-title-main">Methanesulfonic anhydride</span> Chemical compound

Methanesulfonic anhydride (Ms2O) is the acid anhydride of methanesulfonic acid. Like methanesulfonyl chloride (MsCl), it may be used to generate mesylates (methanesulfonyl esters).

The Parikh–Doering oxidation is an oxidation reaction that transforms primary and secondary alcohols into aldehydes and ketones, respectively. The procedure uses dimethyl sulfoxide (DMSO) as the oxidant and the solvent, activated by the sulfur trioxide pyridine complex (SO3•C5H5N) in the presence of triethylamine or diisopropylethylamine as base. Dichloromethane is frequently used as a cosolvent for the reaction.

Alcohol oxidation is a class of organic reactions in which the alcohol functional group is converted into another functional group in which carbon carries a higher oxidation state.

Oxidation with chromium(VI) complexes involves the conversion of alcohols to carbonyl compounds or more highly oxidized products through the action of molecular chromium(VI) oxides and salts. The principal reagents are Collins reagent, PDC, and PCC. These reagents represent improvements over inorganic chromium(VI) reagents such as Jones reagent.

<span class="mw-page-title-main">Oxoammonium-catalyzed oxidation</span>

Oxoammonium-catalyzed oxidation reactions involve the conversion of organic substrates to more highly oxidized materials through the action of an N-oxoammonium species. Nitroxides may also be used in catalytic amounts in the presence of a stoichiometric amount of a terminal oxidant. Nitroxide radical species used are either 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) or derivatives thereof.

<i>N</i>-<i>tert</i>-Butylbenzenesulfinimidoyl chloride Chemical compound

N-tert-Butylbenzenesulfinimidoyl chloride is a useful oxidant for organic synthesis reactions. It is a good electrophile, and the sulfimide S=N bond can be attacked by nucleophiles, such as alkoxides, enolates, and amide ions. The nitrogen atom in the resulting intermediate is basic, and can abstract an α-hydrogen to create a new double bond.

<span class="mw-page-title-main">Albright–Goldman oxidation</span>

The Albright–Goldman oxidation is a name reaction of organic chemistry, first described by the American chemists J. Donald Albright and Leon Goldman in 1965. The reaction is particularly suitable for the synthesis of aldehydes from primary alcohols. Analogously, secondary alcohols can be oxidized to form ketones. Dimethyl sulfoxide/acetic anhydride serves as oxidizing agent.

References

  1. Tidwell, T. T. (1990). "Oxidation of Alcohols to Carbonyl Compounds via Alkoxysulfonium Ylides: The Moffatt, Swern, and Related Oxidations,. doi:10.1002/0471264180.or039.03". Organic Reactions : 297–555. doi:10.1002/0471264180.or039.03.
  2. Kornblum, N.; Jones, W. J.; Anderson, G. J. (1959). "A new and selective method of oxidation. The conversion of alkyl halides and alkyl tosylates to aldehydes". J. Am. Chem. Soc. 81 (15): 4113–4114. doi:10.1021/ja01524a080.
  3. Barton, D. H. R.; Garner, B. J.; Whightman, R. H. (1964). "A New Procedure for the Oxidation of Alcohols". J. Chem. Soc. : 1855–1857. doi:10.1039/JR9640001847.
  4. Zha, G.-F.; Fang, W.-Y.; Leng, J.; Qin, H.-L. (2019). "A Simple, Mild and General Oxidation of Alcohols to Aldehydes or Ketones by SO2F2/K2CO2 Using DMSO as Solvent and Oxidant". Adv. Synth. Catal. 361 (10): 2262–2267. doi:10.1002/adsc.201900104.