Superquadrics

Last updated
Some superquadrics. Ex sq.png
Some superquadrics.

In mathematics, the superquadrics or super-quadrics (also superquadratics) are a family of geometric shapes defined by formulas that resemble those of ellipsoids and other quadrics, except that the squaring operations are replaced by arbitrary powers. They can be seen as the three-dimensional relatives of the superellipses. The term may refer to the solid object or to its surface, depending on the context. The equations below specify the surface; the solid is specified by replacing the equality signs by less-than-or-equal signs.

Contents

The superquadrics include many shapes that resemble cubes, octahedra, cylinders, lozenges and spindles, with rounded or sharp corners. [1] Because of their flexibility and relative simplicity, they are popular geometric modeling tools, especially in computer graphics. It becomes an important geometric primitive widely used in computer vision, [2] [3] robotics, [4] and physical simulation. [5]

Some authors, such as Alan Barr, define "superquadrics" as including both the superellipsoids and the supertoroids. [1] [6] In modern computer vision literatures, superquadrics and superellipsoids are used interchangeably, since superellipsoids are the most representative and widely utilized shape among all the superquadrics. [2] [3] Comprehensive coverage of geometrical properties of superquadrics and methods of their recovery from range images and point clouds are covered in several computer vision literatures. [1] [3] [7] [8]

Formulas

Implicit equation

The surface of the basic superquadric is given by

where r, s, and t are positive real numbers that determine the main features of the superquadric. Namely:

Each exponent can be varied independently to obtain combined shapes. For example, if r=s=2, and t=4, one obtains a solid of revolution which resembles an ellipsoid with round cross-section but flattened ends. This formula is a special case of the superellipsoid's formula if (and only if) r = s.

If any exponent is allowed to be negative, the shape extends to infinity. Such shapes are sometimes called super-hyperboloids.

The basic shape above spans from -1 to +1 along each coordinate axis. The general superquadric is the result of scaling this basic shape by different amounts A, B, C along each axis. Its general equation is

Parametric description

Parametric equations in terms of surface parameters u and v (equivalent to longitude and latitude if m equals 2) are

where the auxiliary functions are

and the sign function sgn(x) is

Spherical product

Barr introduces the spherical product which given two plane curves produces a 3D surface. If

are two plane curves then the spherical product is

This is similar to the typical parametric equation of a sphere:

which give rise to the name spherical product.

Barr uses the spherical product to define quadric surfaces, like ellipsoids, and hyperboloids as well as the torus, superellipsoid, superquadric hyperboloids of one and two sheets, and supertoroids. [1]

Plotting code

The following GNU Octave code generates a mesh approximation of a superquadric:

functionsuperquadric(epsilon,a)n=50;etamax=pi/2;etamin=-pi/2;wmax=pi;wmin=-pi;deta=(etamax-etamin)/n;dw=(wmax-wmin)/n;[i,j]=meshgrid(1:n+1,1:n+1)eta=etamin+(i-1)*deta;w=wmin+(j-1)*dw;x=a(1).*sign(cos(eta)).*abs(cos(eta)).^epsilon(1).*sign(cos(w)).*abs(cos(w)).^epsilon(1);y=a(2).*sign(cos(eta)).*abs(cos(eta)).^epsilon(2).*sign(sin(w)).*abs(sin(w)).^epsilon(2);z=a(3).*sign(sin(eta)).*abs(sin(eta)).^epsilon(3);mesh(x,y,z);end

See also

Related Research Articles

<span class="mw-page-title-main">Electroweak interaction</span> Unified description of electromagnetism and the weak interaction

In particle physics, the electroweak interaction or electroweak force is the unified description of two of the four known fundamental interactions of nature: electromagnetism (electromagnetic interaction) and the weak interaction. Although these two forces appear very different at everyday low energies, the theory models them as two different aspects of the same force. Above the unification energy, on the order of 246 GeV, they would merge into a single force. Thus, if the temperature is high enough – approximately 1015 K – then the electromagnetic force and weak force merge into a combined electroweak force. During the quark epoch (shortly after the Big Bang), the electroweak force split into the electromagnetic and weak force. It is thought that the required temperature of 1015 K has not been seen widely throughout the universe since before the quark epoch, and currently the highest human-made temperature in thermal equilibrium is around 5.5x1012 K (from the Large Hadron Collider).

In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-12 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way.

<span class="mw-page-title-main">Four-vector</span> 4-dimensional vector in relativity

In special relativity, a four-vector is an object with four components, which transform in a specific way under Lorentz transformations. Specifically, a four-vector is an element of a four-dimensional vector space considered as a representation space of the standard representation of the Lorentz group, the representation. It differs from a Euclidean vector in how its magnitude is determined. The transformations that preserve this magnitude are the Lorentz transformations, which include spatial rotations and boosts.

<span class="mw-page-title-main">Lorentz group</span> Lie group of Lorentz transformations

In physics and mathematics, the Lorentz group is the group of all Lorentz transformations of Minkowski spacetime, the classical and quantum setting for all (non-gravitational) physical phenomena. The Lorentz group is named for the Dutch physicist Hendrik Lorentz.

In physics, a wave vector is a vector used in describing a wave, with a typical unit being cycle per metre. It has a magnitude and direction. Its magnitude is the wavenumber of the wave, and its direction is perpendicular to the wavefront. In isotropic media, this is also the direction of wave propagation.

<span class="mw-page-title-main">Stable distribution</span> Distribution of variables which satisfies a stability property under linear combinations

In probability theory, a distribution is said to be stable if a linear combination of two independent random variables with this distribution has the same distribution, up to location and scale parameters. A random variable is said to be stable if its distribution is stable. The stable distribution family is also sometimes referred to as the Lévy alpha-stable distribution, after Paul Lévy, the first mathematician to have studied it.

In physics, the Majorana equation is a relativistic wave equation. It is named after the Italian physicist Ettore Majorana, who proposed it in 1937 as a means of describing fermions that are their own antiparticle. Particles corresponding to this equation are termed Majorana particles, although that term now has a more expansive meaning, referring to any fermionic particle that is its own anti-particle.

A theoretical motivation for general relativity, including the motivation for the geodesic equation and the Einstein field equation, can be obtained from special relativity by examining the dynamics of particles in circular orbits about the Earth. A key advantage in examining circular orbits is that it is possible to know the solution of the Einstein Field Equation a priori. This provides a means to inform and verify the formalism.

<span class="mw-page-title-main">Covariant formulation of classical electromagnetism</span> Ways of writing certain laws of physics

The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems. These expressions both make it simple to prove that the laws of classical electromagnetism take the same form in any inertial coordinate system, and also provide a way to translate the fields and forces from one frame to another. However, this is not as general as Maxwell's equations in curved spacetime or non-rectilinear coordinate systems.

<span class="mw-page-title-main">Toroidal coordinates</span>

Toroidal coordinates are a three-dimensional orthogonal coordinate system that results from rotating the two-dimensional bipolar coordinate system about the axis that separates its two foci. Thus, the two foci and in bipolar coordinates become a ring of radius in the plane of the toroidal coordinate system; the -axis is the axis of rotation. The focal ring is also known as the reference circle.

Ellipsoidal coordinates are a three-dimensional orthogonal coordinate system that generalizes the two-dimensional elliptic coordinate system. Unlike most three-dimensional orthogonal coordinate systems that feature quadratic coordinate surfaces, the ellipsoidal coordinate system is based on confocal quadrics.

In mathematics and mathematical physics, raising and lowering indices are operations on tensors which change their type. Raising and lowering indices are a form of index manipulation in tensor expressions.

<span class="mw-page-title-main">Taylor–Green vortex</span>

In fluid dynamics, the Taylor–Green vortex is an unsteady flow of a decaying vortex, which has an exact closed form solution of the incompressible Navier–Stokes equations in Cartesian coordinates. It is named after the British physicist and mathematician Geoffrey Ingram Taylor and his collaborator A. E. Green.

Acoustic streaming is a steady flow in a fluid driven by the absorption of high amplitude acoustic oscillations. This phenomenon can be observed near sound emitters, or in the standing waves within a Kundt's tube. Acoustic streaming was explained first by Lord Rayleigh in 1884. It is the less-known opposite of sound generation by a flow.

In fluid dynamics, the Oseen equations describe the flow of a viscous and incompressible fluid at small Reynolds numbers, as formulated by Carl Wilhelm Oseen in 1910. Oseen flow is an improved description of these flows, as compared to Stokes flow, with the (partial) inclusion of convective acceleration.

<span class="mw-page-title-main">Superellipsoid</span> Family of geometric shapes

In mathematics, a superellipsoid is a solid whose horizontal sections are superellipses with the same squareness parameter , and whose vertical sections through the center are superellipses with the squareness parameter . It is a generalization of an ellipsoid, which is a special case when .

<span class="mw-page-title-main">Supertoroid</span> Family of geometric shapes

In geometry and computer graphics, a supertoroid or supertorus is usually understood to be a family of doughnut-like surfaces whose shape is defined by mathematical formulas similar to those that define the superellipsoids. The plural of "supertorus" is either supertori or supertoruses.

Static force fields are fields, such as a simple electric, magnetic or gravitational fields, that exist without excitations. The most common approximation method that physicists use for scattering calculations can be interpreted as static forces arising from the interactions between two bodies mediated by virtual particles, particles that exist for only a short time determined by the uncertainty principle. The virtual particles, also known as force carriers, are bosons, with different bosons associated with each force.

In fluid dynamics, the Burgers vortex or Burgers–Rott vortex is an exact solution to the Navier–Stokes equations governing viscous flow, named after Jan Burgers and Nicholas Rott. The Burgers vortex describes a stationary, self-similar flow. An inward, radial flow, tends to concentrate vorticity in a narrow column around the symmetry axis, while an axial stretching causes the vorticity to increase. At the same time, viscous diffusion tends to spread the vorticity. The stationary Burgers vortex arises when the three effects are in balance.

<span class="mw-page-title-main">Stokes problem</span>

In fluid dynamics, Stokes problem also known as Stokes second problem or sometimes referred to as Stokes boundary layer or Oscillating boundary layer is a problem of determining the flow created by an oscillating solid surface, named after Sir George Stokes. This is considered one of the simplest unsteady problems that has an exact solution for the Navier-Stokes equations. In turbulent flow, this is still named a Stokes boundary layer, but now one has to rely on experiments, numerical simulations or approximate methods in order to obtain useful information on the flow.

References

  1. 1 2 3 4 Barr (1 January 1981). "Superquadrics and Angle-Preserving Transformations". IEEE Computer Graphics and Applications. 1 (1): 11–23. doi:10.1109/MCG.1981.1673799. ISSN   0272-1716. S2CID   9389947.
  2. 1 2 Paschalidou, Despoina; Ulusoy, Ali Osman; Geiger, Andreas (2019). "Superquadrics Revisited: Learning 3D Shape Parsing Beyond Cuboids". 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 10336–10345. arXiv: 1904.09970 . doi:10.1109/CVPR.2019.01059. ISBN   978-1-7281-3293-8. S2CID   128265641.
  3. 1 2 3 Liu, Weixiao; Wu, Yuwei; Ruan, Sipu; Chirikjian, Gregory S. (2022). "Robust and Accurate Superquadric Recovery: A Probabilistic Approach". 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 2666–2675. arXiv: 2111.14517 . doi:10.1109/CVPR52688.2022.00270. ISBN   978-1-6654-6946-3. S2CID   244715106.
  4. Ruan, Sipu; Wang, Xiaoli; Chirikjian, Gregory S. (2022). "Collision Detection for Unions of Convex Bodies With Smooth Boundaries Using Closed-Form Contact Space Parameterization". IEEE Robotics and Automation Letters. 7 (4): 9485–9492. doi: 10.1109/LRA.2022.3190629 . ISSN   2377-3766. S2CID   250543506.
  5. Lu, G.; Third, J. R.; Müller, C. R. (2012-08-20). "Critical assessment of two approaches for evaluating contacts between super-quadric shaped particles in DEM simulations". Chemical Engineering Science. 78: 226–235. Bibcode:2012ChEnS..78..226L. doi:10.1016/j.ces.2012.05.041. ISSN   0009-2509.
  6. Alan H. Barr (1992), Rigid Physically Based Superquadrics. Chapter III.8 of Graphics Gems III, edited by D. Kirk, pp. 137–159
  7. Aleš Jaklič, Aleš Leonardis, Franc Solina (2000) Segmentation and Recovery of Superquadrics. Kluwer Academic Publishers, Dordrecht
  8. Wu, Yuwei; Liu, Weixiao; Ruan, Sipu; Chirikjian, Gregory S. (2022). "Primitive-Based Shape Abstraction via Nonparametric Bayesian Inference". In Avidan, Shai; Brostow, Gabriel; Cissé, Moustapha; Farinella, Giovanni Maria; Hassner, Tal (eds.). Computer Vision – ECCV 2022. Lecture Notes in Computer Science. Vol. 13687. Cham: Springer Nature Switzerland. pp. 479–495. arXiv: 2203.14714 . doi:10.1007/978-3-031-19812-0_28. ISBN   978-3-031-19812-0.