Svanbergite

Last updated
Svanbergite
Svanbergite w-pyrophyllite on andalusite Basic strontium aluminum phosphate Donally Mine near Thorne Minerals County Nevada 1879.jpg
Svanbergite with pyrophyllite and andalusite
General
Category Phosphate minerals
Formula
(repeating unit)
SrAl3(PO4)(SO4)(OH)6
IMA symbol Svb [1]
Strunz classification 8.BL.05
Crystal system Trigonal
Crystal class Hexagonal scalenohedral (3m)
H-M symbol: (3 2/m)
Space group R3m
Unit cell a = 6.970–6.992  Å
c = 16.567–16.75 Å, Z = 3
Identification
ColorColorless, cream-yellow, rose, reddish brown
Crystal habit Rhombohedral crystals (to pseudocubic); granular, massive
Cleavage Distinct on {0001}
Mohs scale hardness5
Luster Vitreous to adamantine
Diaphaneity Translucent
Specific gravity 3.22
Optical propertiesUniaxial (+)
Refractive index nω = 1.631–1.635 nε= 1.646–1.649
Birefringence δ=0.0140–0.0150
References [2] [3]

Svanbergite is a colorless, yellow or reddish mineral with the chemical formula Sr Al 3(P O 4)(SO4)(OH)6. It has rhombohedral crystals. [4]

It was first described for an occurrence in Varmland, Sweden in 1854 and named for Swedish chemist Lars Fredrik Svanberg (1805–1878). [2] [3]

It occurs in high aluminium medium-grade metamorphic rocks; in bauxite deposits and from sulfate enriched argillic alteration (high silica and clay) associated with hydrothermal systems often replacing apatite. It occurs with pyrophyllite, kyanite, andalusite, lazulite, augelite, alunite, kaolinite and quartz. [2]

Svanbergite crystals on white dolomite from Radium Hot Springs, British Columbia, Canada (size: 3 x 2.5 x 2.1 cm) Svanbergite-Dolomite-21593.jpg
Svanbergite crystals on white dolomite from Radium Hot Springs, British Columbia, Canada (size: 3 × 2.5 × 2.1 cm)

Related Research Articles

<span class="mw-page-title-main">Petalite</span> Silicate mineral, used in ceramic glazing

Petalite, also known as castorite, is a lithium aluminum tektosilicate mineral LiAlSi4O10, crystallizing in the monoclinic system. Petalite occurs as colorless, pink, grey, yellow, yellow grey, to white tabular crystals and columnar masses. It occurs in lithium-bearing pegmatites with spodumene, lepidolite, and tourmaline. Petalite is an important ore of lithium, and is converted to spodumene and quartz by heating to ~500 °C and under 3 kbar of pressure in the presence of a dense hydrous alkali borosilicate fluid with a minor carbonate component. Petalite (and secondary spodumene formed from it) is lower in iron than primary spodumene, making it a more useful source of lithium in, e.g., the production of glass. The colorless varieties are often used as gemstones.

<span class="mw-page-title-main">Augite</span> Common rock-forming pyroxene mineral

Augite, also known as Augurite, is a common rock-forming pyroxene mineral with formula (Ca,Na)(Mg,Fe,Al,Ti)(Si,Al)2O6. The crystals are monoclinic and prismatic. Augite has two prominent cleavages, meeting at angles near 90 degrees.

<span class="mw-page-title-main">Pyrophyllite</span> Aluminium silicate hydroxide phyllosilicate mineral

Pyrophyllite is a phyllosilicate mineral composed of aluminium silicate hydroxide: Al2Si4O10(OH)2. It occurs in two forms (habits): crystalline folia and compact masses; distinct crystals are not known.

<span class="mw-page-title-main">Umangite</span>

Umangite is a copper selenide mineral, Cu3Se2, discovered in 1891. It occurs only in small grains or fine granular aggregates with other copper minerals of the sulfide group. It has a hardness of 3. It is blue-black to red-violet in color with a black streak. It has a metallic luster.

<span class="mw-page-title-main">Albite</span> Mineral, Na-feldspar, Na-silicate, tectosilicate

Albite is a plagioclase feldspar mineral. It is the sodium endmember of the plagioclase solid solution series. It represents a plagioclase with less than 10% anorthite content. The pure albite endmember has the formula NaAlSi
3
O
8
. It is a tectosilicate. Its color is usually pure white, hence its name from Latin, albus. It is a common constituent in felsic rocks.

<span class="mw-page-title-main">Tephroite</span>

Tephroite is the manganese endmember of the olivine group of nesosilicate minerals with the formula Mn2SiO4. A solid solution series exists between tephroite and its analogues, the group endmembers fayalite and forsterite. Divalent iron or magnesium may readily replace manganese in the olivine crystal structure.

<span class="mw-page-title-main">Arfvedsonite</span> Sodium amphibole mineral

Arfvedsonite or soda hornblende (partiellement obsolète) is a sodium amphibole mineral with composition: [Na][Na2][(Fe2+)4Fe3+][(OH)2|Si8O22]. It crystallizes in the monoclinic prismatic crystal system and typically occurs as greenish black to bluish grey fibrous to radiating or stellate prisms.

<span class="mw-page-title-main">Lazulite</span> Phosphate mineral

Lazulite ((Mg,Fe2+)Al2(PO4)2(OH)2) is a blue, phosphate mineral containing magnesium, iron, and aluminium phosphate. Lazulite forms one endmember of a solid solution series with the darker iron rich scorzalite.

<span class="mw-page-title-main">Glaucodot</span>

Glaucodot is a cobalt iron arsenic sulfide mineral with formula (Co,Fe)AsS. The cobalt:iron(II) ratio is typically 3:1 with minor nickel substituting. It forms a series with arsenopyrite (FeAsS). It is an opaque grey to tin-white typically found as massive forms without external crystal form. It crystallizes in the orthorhombic system. The locality at Håkansboda, Sweden has rare twinned dipyramidal crystals. It is brittle with a Mohs hardness of 5 and a specific gravity of 5.95. It occurs in high temperature hydrothermal deposits with pyrrhotite and chalcopyrite. Glaucodot is classed as a sulfide in the arsenopyrite löllingite group.

<span class="mw-page-title-main">Galaxite</span>

Galaxite, also known as 'mangan-spinel' is an isometric mineral belonging to the spinel group of oxides with the ideal chemical formula Mn2+Al2O4.

<span class="mw-page-title-main">Chloritoid</span>

Chloritoid is a silicate mineral of metamorphic origin. It is an iron magnesium manganese alumino-silicate hydroxide with formula (Fe, Mg, Mn)
2
Al
4
Si
2
O
10
(OH)
4
. It occurs as greenish grey to black platy micaceous crystals and foliated masses. Its Mohs hardness is 6.5, unusually high for a platy mineral, and it has a specific gravity of 3.52 to 3.57. It typically occurs in phyllites, schists and marbles.

<span class="mw-page-title-main">Jacobsite</span>

Jacobsite is a manganese iron oxide mineral. It is in the spinel group and forms a solid solution series with magnetite. The chemical formula is (Mn,Mg)Fe2O4 or with oxidation states and substitutions: (Mn2+,Fe2+,Mg)(Fe3+,Mn3+)2O4.

<span class="mw-page-title-main">Microlite</span>

Microlite was once known as a pale-yellow, reddish-brown, or black isometric mineral composed of sodium calcium tantalum oxide with a small amount of fluorine. Its chemical formula is (Na,Ca)2Ta2O6(O,OH,F). Today it is a name of a group of oxide minerals of a similar stoichiometry having tantalum prevailing over titanium and niobium. The microlite group belongs to a large pyrochlore supergroup that occurs in pegmatites and constitutes an ore of tantalum. It has a Mohs hardness of 5.5 and a variable specific gravity of 4.2 to 6.4. It occurs as disseminated microscopic subtranslucent to opaque octahedral crystals with a refractive index of 2.0 to 2.2. Microlite is also called djalmaite, but both names are now obsolete.

<span class="mw-page-title-main">Augelite</span> Aluminium phosphate mineral

Augelite is an aluminium phosphate mineral with formula: Al2(PO4)(OH)3. The shade varies from colorless to white, yellow or rose. Its crystal system is monoclinic.

<span class="mw-page-title-main">Berlinite</span>

Berlinite (aluminium phosphate, chemical formula AlPO4 or Al(PO4)) is a rare high-temperature hydrothermal or metasomatic phosphate mineral. It has the same crystal structure as quartz with a low temperature polytype isostructural with α–quartz and a high temperature polytype isostructural with β–quartz. Berlinite can vary from colorless to greyish or pale pink and has translucent crystals.

<span class="mw-page-title-main">Manganosite</span> Rare manganese(II) oxide mineral: MnO

Manganosite is a rare mineral composed of manganese(II) oxide MnO. It was first described in 1817 for an occurrence in the Harz Mountains, Saxony-Anhalt, Germany. It has also been reported from Langban and Nordmark, Sweden and at Franklin Furnace, New Jersey. It also occurs in Japan, Kyrgyzstan and Burkina Faso.

<span class="mw-page-title-main">Alluaudite</span>

Alluaudite is a relatively common alkaline manganese iron phosphate mineral with the chemical formula (Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3. It occurs as metasomatic replacement in granitic pegmatites and within phosphatic nodules in shales.

<span class="mw-page-title-main">Mendipite</span> Oxyhalide of lead. Rare mineral found in the Mendip Hills

Mendipite is a rare mineral that was named in 1939 for the locality where it is found, the Mendip Hills in Somerset, England. It is an oxyhalide of lead with formula Pb3Cl2O2.

<span class="mw-page-title-main">Fluoborite</span>

Fluoborite has a chemical formula of Mg3(BO3)(F,OH)3. Its name comes from its main chemical components, fluorine and boron. It was first described in 1926.

<span class="mw-page-title-main">Sarkinite</span>

Sarkinite, synonymous with chondrarsenite and polyarsenite, is a mineral with formula Mn2(AsO4)(OH). The mineral is named for the Greek word σάρκιυος, meaning made of flesh, for its red color and greasy luster. The mineral was first noted in Sweden in 1865 as chondrarsenite, though not identified as sarkinite until 1885.

References

  1. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi: 10.1180/mgm.2021.43 . S2CID   235729616.
  2. 1 2 3 Mineral Handbook
  3. 1 2 Webmineral
  4. Richard V. Gaines, H. Catherine W. Skinner, Eugene E. Foord, Brian Mason, and Abraham Rosenzweig: "Dana's new mineralogy", p. 962. John Wiley & Sons, 1997