TIMP2

Last updated
TIMP2
Protein TIMP2 PDB 1bqq.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases TIMP2 , CSC-21K, DDC8, TIMP metallopeptidase inhibitor 2
External IDs OMIM: 188825; MGI: 98753; HomoloGene: 2444; GeneCards: TIMP2; OMA:TIMP2 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_003255

NM_011594

RefSeq (protein)

NP_003246

n/a

Location (UCSC) Chr 17: 78.85 – 78.93 Mb Chr 11: 118.19 – 118.25 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Tissue inhibitor of metalloproteinases 2 (TIMP2) is a gene and a corresponding protein. The gene is a member of the TIMP gene family. The protein is thought to be a metastasis suppressor.[ citation needed ]

Contents

Function

The proteins encoded by this gene family are natural inhibitors of the matrix metalloproteinases (MMP), a group of peptidases involved in degradation of the extracellular matrix. In addition to an inhibitory role against metalloproteinases, the encoded protein has a unique role among TIMP family members in its ability to directly suppress the proliferation of endothelial cells. As a result, the encoded protein may be critical to the maintenance of tissue homeostasis by suppressing the proliferation of quiescent tissues in response to angiogenic factors, and by inhibiting protease activity in tissues undergoing remodelling of the extracellular matrix. [5] TIMP2 functions as both an MMP inhibitor and an activator. TIMPs inhibit active MMPs, but different TIMPs inhibit different MMPs better than others. For example, TIMP-1 inhibits MMP-7, MMP-9, MMP-1 and MMP-3 better than TIMP-2, and TIMP-2 inhibits MMP-2 more effectively than other TIMPs. [6]

In melanocytic cells TIMP2 gene expression may be regulated by MITF. [7]

A recent discovery is that TIMP2 plays an important role in hippocampal function and cognitive function. It plays a critical role in the benefit conferred to old mice when given human umbilical cord blood. [8] [9] Its role in hippocampal function was later described to be related to its interactions with the extracellular matrix to regulate neurogenesis and dendritic spines plasticity. [10]

Interactions

TIMP2 has been shown to interact with:

See also

Related Research Articles

Matrix metalloproteinases (MMPs), also known as matrix metallopeptidases or matrixins, are metalloproteinases that are calcium-dependent zinc-containing endopeptidases; other family members are adamalysins, serralysins, and astacins. The MMPs belong to a larger family of proteases known as the metzincin superfamily.

Gelatinases are enzymes capable of degrading gelatin through hydrolysis, playing a major role in degradation of extracellular matrix and tissue remodeling. Gelatinases are a type of matrix metalloproteinase (MMP), a family of enzymes that depend on zinc as a cofactor and can break down parts of the extracellular matrix. MMPs have multiple subgroups, including gelatinase A and gelatinase B. Gelatinases are assigned a variety of Enzyme Commission numbers: gelatinase A uses 3.4.24.24, and gelatinase B uses 3.4.24.35, in which the first three numbers are same. The first digit, 3, is the class. Class 3 enzymes are hydrolases, enzymes that catalyze hydrolysis reactions, that is, they cleave bonds in presence of water. The next digit represents sub-class 4, or proteases, which are enzymes who hydrolyze peptide bonds in proteins. The next number is the sub-subclass of 24, which consists of metalloendopeptidases which contain metal ions in their active sites, in this case zinc, which help in cleaving peptide bonds. The last part of the EC number is the serial number, identifying specific enzymes within a sub-subclass. 24 represents gelatinase A, which is a metalloproteinase that breaks down gelatin and collagen, while 35 represents gelatinase B, which hydrolyzes peptide bonds.

Tissue inhibitors of metalloproteinases (TIMPs) are specific endogenous protease inhibitors to the matrix metalloproteinases. There are four TIMPs; TIMP1, TIMP2, TIMP3 and TIMP4. TIMP3 has been observed progressively downregulated in Human papillomavirus-positive neoplastic keratinocytes derived from uterine cervical preneoplastic lesions at different levels of malignancy. For this reason, TIMP3 is likely to be associated with tumorigenesis and may be a potential prognostic marker for uterine cervical preneoplastic lesions progression.

<span class="mw-page-title-main">MMP9</span> Protein-coding gene in the species Homo sapiens

Matrix metalloproteinase-9 (MMP-9), also known as 92 kDa type IV collagenase, 92 kDa gelatinase or gelatinase B (GELB), is a matrixin, a class of enzymes that belong to the zinc-metalloproteinases family involved in the degradation of the extracellular matrix. In humans the MMP9 gene encodes for a signal peptide, a propeptide, a catalytic domain with inserted three repeats of fibronectin type II domain followed by a C-terminal hemopexin-like domain.

<span class="mw-page-title-main">MMP2</span> Protein-coding gene in the species Homo sapiens

72 kDa type IV collagenase also known as matrix metalloproteinase-2 (MMP-2) and gelatinase A is an enzyme that in humans is encoded by the MMP2 gene. The MMP2 gene is located on chromosome 16 at position 12.2.

<span class="mw-page-title-main">MMP14</span> Protein-coding gene in the species Homo sapiens

Matrix metalloproteinase-14 is an enzyme that in humans is encoded by the MMP14 gene.

<span class="mw-page-title-main">MMP3</span>

Stromelysin-1 also known as matrix metalloproteinase-3 (MMP-3) is an enzyme that in humans is encoded by the MMP3 gene. The MMP3 gene is part of a cluster of MMP genes which localize to chromosome 11q22.3. MMP-3 has an estimated molecular weight of 54 kDa.

<span class="mw-page-title-main">MMP7</span> Protein-coding gene in humans

Matrilysin also known as matrix metalloproteinase-7 (MMP-7), pump-1 protease (PUMP-1), or uterine metalloproteinase is an enzyme in humans that is encoded by the MMP7 gene. The enzyme has also been known as matrin, putative metalloproteinase-1, matrix metalloproteinase pump 1, PUMP-1 proteinase, PUMP, metalloproteinase pump-1, putative metalloproteinase, MMP). Human MMP-7 has a molecular weight around 30 kDa.

<span class="mw-page-title-main">Matrix metallopeptidase 13</span> Protein-coding gene in the species Homo sapiens

Collagenase 3 is an enzyme that in humans is encoded by the MMP13 gene. It is a member of the matrix metalloproteinase (MMP) family. Like most MMPs, it is secreted as an inactive pro-form. MMP-13 has a predicted molecular weight around 54 kDa. It is activated once the pro-domain is cleaved, leaving an active enzyme composed of the catalytic domain and the hemopexin-like domain PDB: 1PEX​. Although the actual mechanism has not been described, the hemopexin domain participates in collagen degradation, the catalytic domain alone being particularly inefficient in collagen degradation. During embryonic development, MMP-13 is expressed in the skeleton as required for restructuring the collagen matrix for bone mineralization. In pathological situations it is highly overexpressed; this occurs in human carcinomas, rheumatoid arthritis and osteoarthritis.

<span class="mw-page-title-main">Matrix metallopeptidase 12</span> Enzyme involved in breakdown of extracellular matrix, encoded for by the MMP12 gene in humans

Matrix metalloproteinase-12 (MMP-12) also known as macrophage metalloelastase (MME) or macrophage elastase (ME) is an enzyme that in humans is encoded by the MMP12 gene.

<span class="mw-page-title-main">MMP26</span> Protein-coding gene in the species Homo sapiens

Matrix metalloproteinase-26 also known as matrilysin-2 and endometase is an enzyme that in humans is encoded by the MMP26 gene.

<span class="mw-page-title-main">MMP16</span> Protein-coding gene in the species Homo sapiens

Matrix metalloproteinase-16 is an enzyme that in humans is encoded by the MMP16 gene.

<span class="mw-page-title-main">TIMP4</span> Protein-coding gene in the species Homo sapiens

Metalloproteinase inhibitor 4 is an enzyme that in humans is encoded by the TIMP4 gene.

<span class="mw-page-title-main">MMP17</span> Protein-coding gene in the species Homo sapiens

Matrix metalloproteinase-17 (MMP-17) also known as membrane-type matrix metalloproteinase 4 is an enzyme that in humans is encoded by the MMP17 gene.

<span class="mw-page-title-main">MMP25</span> Protein-coding gene in the species Homo sapiens

Matrix metalloproteinase-25 is an enzyme that in humans is encoded by the MMP25 gene.

<span class="mw-page-title-main">MMP28</span> Protein-coding gene in the species Homo sapiens

Matrix metalloproteinase 28 also known as epilysin is an enzyme that in humans is encoded by the MMP28 gene.

<span class="mw-page-title-main">MMP27</span> Protein-coding gene in the species Homo sapiens

Matrix metallopeptidase 27 also known as MMP-27 is an enzyme which in humans is encoded by the MMP27 gene.

<span class="mw-page-title-main">MMP15</span> Protein-coding gene in the species Homo sapiens

Matrix metalloproteinase 15 also known as MMP15 is an enzyme that in humans is encoded by the MMP15 gene.

Angiogenesis is the process of forming new blood vessels from existing blood vessels, formed in vasculogenesis. It is a highly complex process involving extensive interplay between cells, soluble factors, and the extracellular matrix (ECM). Angiogenesis is critical during normal physiological development, but it also occurs in adults during inflammation, wound healing, ischemia, and in pathological conditions such as rheumatoid arthritis, hemangioma, and tumor growth. Proteolysis has been indicated as one of the first and most sustained activities involved in the formation of new blood vessels. Numerous proteases including matrix metalloproteinases (MMPs), a disintegrin and metalloproteinase domain (ADAM), a disintegrin and metalloproteinase domain with throbospondin motifs (ADAMTS), and cysteine and serine proteases are involved in angiogenesis. This article focuses on the important and diverse roles that these proteases play in the regulation of angiogenesis.

The hemopexin family is a family of evolutionarily related proteins. Hemopexin-like repeats occur in vitronectin and some matrix metalloproteinases family (matrixins). The HX repeats of some matrixins bind tissue inhibitor of metallopeptidases (TIMPs).

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000035862 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000017466 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "Entrez Gene: TIMP2 TIMP metallopeptidase inhibitor 2".
  6. Bourboulia D, Stetler-Stevenson WG (June 2010). "Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs): Positive and negative regulators in tumor cell adhesion". Seminars in Cancer Biology. 20 (3): 161–168. doi:10.1016/j.semcancer.2010.05.002. PMC   2941566 . PMID   20470890.
  7. Hoek KS, Schlegel NC, Eichhoff OM, Widmer DS, Praetorius C, Einarsson SO, et al. (December 2008). "Novel MITF targets identified using a two-step DNA microarray strategy". Pigment Cell & Melanoma Research. 21 (6): 665–676. doi: 10.1111/j.1755-148X.2008.00505.x . PMID   19067971. S2CID   24698373.
  8. Castellano JM, Mosher KI, Abbey RJ, McBride AA, James ML, Berdnik D, et al. (April 2017). "Human umbilical cord plasma proteins revitalize hippocampal function in aged mice". Nature. 544 (7651): 488–492. Bibcode:2017Natur.544..488C. doi:10.1038/nature22067. PMC   5586222 . PMID   28424512.
  9. "Blood from human babies makes brains of elderly mice young again". New Scientist. Apr 29, 2017.
  10. Ferreira AC, Hemmer BM, Philippi SM, Grau-Perales AB, Rosenstadt JL, Liu H, et al. (September 2023). "Neuronal TIMP2 regulates hippocampus-dependent plasticity and extracellular matrix complexity". Molecular Psychiatry. 28 (9): 3943–3954. doi:10.1038/s41380-023-02296-5. PMC   10730400 . PMID   37914840.
  11. Zucker S, Drews M, Conner C, Foda HD, DeClerck YA, Langley KE, et al. (January 1998). "Tissue inhibitor of metalloproteinase-2 (TIMP-2) binds to the catalytic domain of the cell surface receptor, membrane type 1-matrix metalloproteinase 1 (MT1-MMP)". The Journal of Biological Chemistry. 273 (2): 1216–1222. doi: 10.1074/jbc.273.2.1216 . PMID   9422789.
  12. Morgunova E, Tuuttila A, Bergmann U, Tryggvason K (May 2002). "Structural insight into the complex formation of latent matrix metalloproteinase 2 with tissue inhibitor of metalloproteinase 2". Proceedings of the National Academy of Sciences of the United States of America. 99 (11): 7414–7419. Bibcode:2002PNAS...99.7414M. doi: 10.1073/pnas.102185399 . PMC   124245 . PMID   12032297.
  13. Overall CM, Tam E, McQuibban GA, Morrison C, Wallon UM, Bigg HF, et al. (December 2000). "Domain interactions in the gelatinase A.TIMP-2.MT1-MMP activation complex. The ectodomain of the 44-kDa form of membrane type-1 matrix metalloproteinase does not modulate gelatinase A activation". The Journal of Biological Chemistry. 275 (50): 39497–39506. doi: 10.1074/jbc.M005932200 . PMID   10991943.
  14. Bigg HF, Shi YE, Liu YE, Steffensen B, Overall CM (June 1997). "Specific, high affinity binding of tissue inhibitor of metalloproteinases-4 (TIMP-4) to the COOH-terminal hemopexin-like domain of human gelatinase A. TIMP-4 binds progelatinase A and the COOH-terminal domain in a similar manner to TIMP-2". The Journal of Biological Chemistry. 272 (24): 15496–15500. doi: 10.1074/jbc.272.24.15496 . PMID   9182583.
  15. Kai HS, Butler GS, Morrison CJ, King AE, Pelman GR, Overall CM (December 2002). "Utilization of a novel recombinant myoglobin fusion protein expression system to characterize the tissue inhibitor of metalloproteinase (TIMP)-4 and TIMP-2 C-terminal domain and tails by mutagenesis. The importance of acidic residues in binding the MMP-2 hemopexin C-domain". The Journal of Biological Chemistry. 277 (50): 48696–48707. doi: 10.1074/jbc.M209177200 . PMID   12374789.

Further reading