TMS320

Last updated
Texas Instruments TMS32020 KL TI TMS32020.jpg
Texas Instruments TMS32020

TMS320 is a blanket name for a series of digital signal processors (DSPs) from Texas Instruments. It was introduced on April 8, 1983 through the TMS32010 processor, which was then the fastest DSP on the market.

Contents

The processor is available in many different variants, some with fixed-point arithmetic and some with floating-point arithmetic. The TMS320 processors were fabricated on MOS integrated circuit chips, including both NMOS and CMOS variants. The floating point DSP TMS320C3x, which exploits delayed branch logic, has as many as three delay slots. [1]

This series of processors are used as a digital signal processing co-processor and as a main CPU in some applications. Newer implementations support standard IEEE JTAG control for boundary scan and/or in-circuit debugging.

The original TMS32010 and its subsequent variants is an example of a CPU with a modified Harvard architecture, which features separate address spaces for instruction and data memory but the ability to read data values from instruction memory. The TMS32010 featured a fast multiply-and-accumulate operation useful in both DSP applications as well as transformations used in computer graphics. The graphics controller card for the Apollo Computer DN570 Workstation, released in 1985, was based on the TMS32010 and could transform 20,000 2D vectors per second.[ clarification needed ]

Variants

The TMS320 architecture has been around for a while so a number of product variants have developed. The product codes used by Texas Instruments after the first TMS32010 processor have involved a series of processor named "TMS320Cabcd", where a is the main series, b the generation and cd is some custom number for a minor sub-variant.

For this reason, those working with DSPs often abbreviate a processor as "C5x" when the actual name is, for example, TMS320C5510, since all products have the name "TMS320", and all processors with "C5" in the name are code compatible and share the same basic features. Similarly, a subgrouping may be referred to as, for example, C55x, as processors in the same series and generation are even more similar.

TMS320 processors are fabricated on MOS integrated circuit chips, including both NMOS and CMOS variants. [2]

Legacy series

C2000 series

C5000 series

C6000 series

Texas Instruments TMS320C6726BRFP Extron DMP 128 - subboard 20-947-01LF - Texas Instruments TMS320C6726BRFP-6531.jpg
Texas Instruments TMS320C6726BRFP

C7000 series

The C7000 series was released in early 2020, but cores are not available individually. As of August 2023, they are only available bundled inside other SOCs, such as the TDA4VM, which features a C71x DSP.

DaVinci series

OMAP variants

DA variants

DM variants

Other vendors

Die of the General Instrument DSP32010 GI DSP32010 die.JPG
Die of the General Instrument DSP32010

General Instrument manufactured the TMS32010 as a second source.

ZMD U320C20FC ZMD U320C20FC7.jpg
ZMD U320C20FC

Around 1991 a CMOS-version of the TMS32020 was manufactured by ZMD under the designation U320C20FC. [10]

NIIET 1867VC10T 1867VTs10T NIIET.jpg
NIIET 1867VC10T

A number of devices from the TMS320 series are in production at NIIET Voronezh as the 1867 series, [11] including a radiation-hardened version of the TMS320C25 under the designation 1867VM7T (Russian : 1867ВМ7Т). Clones of the TMS320C546 went into production at PKK Milandr Moscow in 2009 under the designation 1967VC1T (Russian : 1967ВЦ1Т) [12] and in 2016 at MVC Nizhny Novgorod as 1910VM1T (Russian : 1910ВМ1Т). [13] PKK Milandr also manufactures a TMS320C54x with an additional ARM core as the 1901VC1T (Russian : 1901ВЦ1Т). [14]

Software support

The TMS320 series can be programmed using C, C++, and/or assembly language. Most work on the TMS320 processors is done using Texas Instruments proprietary toolchain and their integrated development environment Code Composer Studio, which includes a mini operating system called DSP/BIOS. Additionally, a department at the Chemnitz University of Technology has developed preliminary support for the TMS320C6x series in the GNU Compiler Collection. [15]

In November 2007 TI released part of its toolchain as freeware for non-commercial users, offering the bare compiler, assembler, optimizer and linker under a proprietary license. [16] [17] However, neither the IDE nor a debugger were included, so for debugging and JTAG access to the DSPs, users still need to purchase the complete toolchain.

In 2010 Texas Instruments contracted CodeSourcery (the assignment later transferred to Mentor Graphics as part of their acquisition) to provide deep integration and support for the C6x series in GCC, as part of their effort to port the Linux kernel to C6x. This culminated in C6x being a supported architecture in GCC release 4.7 on March 22, 2012. [18]

See also

Related Research Articles

i386 32-bit microprocessor by Intel

The Intel 386, originally released as 80386 and later renamed i386, is a 32-bit microprocessor introduced in 1985. The first versions had 275,000 transistors and were the central processing unit (CPU) of many workstations and high-end personal computers of the time.

XScale is a microarchitecture for central processing units initially designed by Intel implementing the ARM architecture instruction set. XScale comprises several distinct families: IXP, IXC, IOP, PXA and CE, with some later models designed as system-on-a-chip (SoC). Intel sold the PXA family to Marvell Technology Group in June 2006. Marvell then extended the brand to include processors with other microarchitectures, like Arm's Cortex.

<span class="mw-page-title-main">Digital signal processor</span> Specialized microprocessor optimized for digital signal processing

A digital signal processor (DSP) is a specialized microprocessor chip, with its architecture optimized for the operational needs of digital signal processing. DSPs are fabricated on metal–oxide–semiconductor (MOS) integrated circuit chips. They are widely used in audio signal processing, telecommunications, digital image processing, radar, sonar and speech recognition systems, and in common consumer electronic devices such as mobile phones, disk drives and high-definition television (HDTV) products.

The POWER1 is a multi-chip CPU developed and fabricated by IBM that implemented the POWER instruction set architecture (ISA). It was originally known as the RISC System/6000 CPU or, when in an abbreviated form, the RS/6000 CPU, before introduction of successors required the original name to be replaced with one that used the same naming scheme (POWERn) as its successors in order to differentiate it from the newer designs.

<span class="mw-page-title-main">OMAP</span>

The OMAP family, developed by Texas Instruments, was a series of image/video processors. They are proprietary system on chips (SoCs) for portable and mobile multimedia applications. OMAP devices generally include a general-purpose ARM architecture processor core plus one or more specialized co-processors. Earlier OMAP variants commonly featured a variant of the Texas Instruments TMS320 series digital signal processor.

<span class="mw-page-title-main">CVAX</span> Microprocessor chipset

The CVAX is a microprocessor chipset developed and fabricated by Digital Equipment Corporation (DEC) that implemented the VAX instruction set architecture (ISA). The chipset consisted of the CVAX 78034 CPU, CFPA floating-point accelerator, CVAX clock chip, and the associated support chips, the CVAX System Support Chip (CSSC), CVAX Memory Controller (CMCTL), and CVAX Q-Bus Interface Chip (CQBIC).

<span class="mw-page-title-main">AVR32</span>

AVR32 is a 32-bit RISC microcontroller architecture produced by Atmel. The microcontroller architecture was designed by a handful of people educated at the Norwegian University of Science and Technology, including lead designer Øyvind Strøm and CPU architect Erik Renno in Atmel's Norwegian design center.

ARM9 is a group of 32-bit RISC ARM processor cores licensed by ARM Holdings for microcontroller use. The ARM9 core family consists of ARM9TDMI, ARM940T, ARM9E-S, ARM966E-S, ARM920T, ARM922T, ARM946E-S, ARM9EJ-S, ARM926EJ-S, ARM968E-S, ARM996HS. Since ARM9 cores were released from 1998 to 2006, they are no longer recommended for new IC designs, instead ARM Cortex-A, ARM Cortex-M, ARM Cortex-R cores are preferred.

<span class="mw-page-title-main">Texas Instruments DaVinci</span> Family of system-on-a-chip processors

The Texas Instruments DaVinci is a family of system on a chip processors that are primarily used in embedded video and vision applications. Many processors in the family combine a DSP core based on the TMS320 C6000 VLIW DSP family and an ARM CPU core into a single system on chip. By using both a general-purpose processor and a DSP, the control and media portions can both be executed by separate processors.

<span class="mw-page-title-main">POWER2</span> 1993 family of microprocessors by IBM

The POWER2, originally named RIOS2, is a processor designed by IBM that implemented the POWER instruction set architecture. The POWER2 was the successor of the POWER1, debuting in September 1993 within IBM's RS/6000 systems. When introduced, the POWER2 was the fastest microprocessor, surpassing the Alpha 21064. When the Alpha 21064A was introduced in 1993, the POWER2 lost the lead and became second. IBM claimed that the performance for a 62.5 MHz POWER2 was 73.3 SPECint92 and 134.6 SPECfp92.

ARM11 is a group of 32-bit RISC ARM processor cores licensed by ARM Holdings. The ARM11 core family consists of ARM1136J(F)-S, ARM1156T2(F)-S, ARM1176JZ(F)-S, and ARM11MPCore. Since ARM11 cores were released from 2002 to 2005, they are no longer recommended for new IC designs, instead ARM Cortex-A and ARM Cortex-R cores are preferred.

<span class="mw-page-title-main">Code Composer Studio</span> Integrated development environment

Code Composer Studio is an integrated development environment to develop applications for Texas Instruments embedded processors.

<span class="mw-page-title-main">UltraSPARC III</span> Microprocessor developed by Sun Microsystems

The UltraSPARC III, code-named "Cheetah", is a microprocessor that implements the SPARC V9 instruction set architecture (ISA) developed by Sun Microsystems and fabricated by Texas Instruments. It was introduced in 2001 and operates at 600 to 900 MHz. It was succeeded by the UltraSPARC IV in 2004. Gary Lauterbach was the chief architect.

The IGEPv2 board is a low-power, fanless single-board computer based on the OMAP 3 series of ARM-compatible processors. It is developed and produced by Spanish corporation ISEE and is the second IGEP platform in the series. The IGEPv2 is open hardware, licensed under a Creative Commons Attribution-Non Commercial-ShareAlike 3.0 unported license.

<span class="mw-page-title-main">ARM Cortex-M</span> Group of 32-bit RISC processor cores

The ARM Cortex-M is a group of 32-bit RISC ARM processor cores licensed by ARM Limited. These cores are optimized for low-cost and energy-efficient integrated circuits, which have been embedded in tens of billions of consumer devices. Though they are most often the main component of microcontroller chips, sometimes they are embedded inside other types of chips too. The Cortex-M family consists of Cortex-M0, Cortex-M0+, Cortex-M1, Cortex-M3, Cortex-M4, Cortex-M7, Cortex-M23, Cortex-M33, Cortex-M35P, Cortex-M52, Cortex-M55, Cortex-M85. A floating-point unit (FPU) option is available for Cortex-M4 / M7 / M33 / M35P / M52 / M55 / M85 cores, and when included in the silicon these cores are sometimes known as "Cortex-MxF", where 'x' is the core variant.

<span class="mw-page-title-main">STM32</span> ARM Cortex-M based Microcontrollers by STMicroelectronics

STM32 is a family of 32-bit microcontroller integrated circuits by STMicroelectronics. The STM32 chips are grouped into related series that are based around the same 32-bit ARM processor core: Cortex-M0, Cortex-M0+, Cortex-M3, Cortex-M4, Cortex-M7, Cortex-M33. Internally, each microcontroller consists of ARM processor core(s), flash memory, static RAM, debugging interface, and various peripherals.

<span class="mw-page-title-main">NXP LPC</span> Family of 32-bit microcontroller integrated circuits

LPC is a family of 32-bit microcontroller integrated circuits by NXP Semiconductors. The LPC chips are grouped into related series that are based around the same 32-bit ARM processor core, such as the Cortex-M4F, Cortex-M3, Cortex-M0+, or Cortex-M0. Internally, each microcontroller consists of the processor core, static RAM memory, flash memory, debugging interface, and various peripherals. The earliest LPC series were based on the Intel 8-bit 80C51 core. As of February 2011, NXP had shipped over one billion ARM processor-based chips.

The MSP432 is a mixed-signal microcontroller family from Texas Instruments. It is based on a 32-bit ARM Cortex-M4F CPU, and extends their 16-bit MSP430 line, with a larger address space for code and data, and faster integer and floating point calculation than the MSP430. Like the MSP430, it has a number of built-in peripheral devices, and is designed for low power requirements. In 2021, TI confirmed that the MSP432 has been discontinued and "there will be no new MSP432 products".

References

  1. "The TMS320C30 Floating-Point Digital Signal Processor" (PDF). ti.com. p. 14. Retrieved 2023-11-04.
  2. "TMS320C25". Texas Instruments . Retrieved 10 December 2019.
  3. "TMS320 SECOND GENERATION DIGITAL SIGNAL PROCESSORS" (PDF). Texas Instruments. Retrieved 7 December 2023.
  4. "TMS320C40". Texas Instruments. Retrieved 10 December 2019.
  5. "TMS320C4x User's Guide" (PDF). p. 171(7-9). Retrieved 2023-12-23.
  6. Guttag, Karl; (USA), Texas Instruments Inc. (June 7, 1996). Picone, Joseph (ed.). "TMS320C8x family architecture and future roadmap". Digital Signal Processing Technology. 2750: 2–11. Bibcode:1996SPIE.2750....2G. doi:10.1117/12.241977. S2CID   60536785 . Retrieved January 7, 2017.(subscription required)
  7. http://www.ti.com/lit/ug/spru131g/spru131g.pdf [ bare URL PDF ]
  8. this "LinuxDevices article". Archived from the original on 2013-01-28. includes more information about this platform
  9. this "Archived copy". Archived from the original on 2009-12-28. Retrieved 2009-09-22.{{cite web}}: CS1 maint: archived copy as title (link) site includes more information
  10. Heuer, Gert (1991). Digitaler Signalprozessor U320C20[Digital signal processor U320C20] (in German). Berlin: Verlag Technik. ISBN   978-3341009987.
  11. "DSP-процессоры" [DSP processors]. niiet.ru (in Russian). Voronezh: OAO "NIIET". Archived from the original on 26 June 2018. Retrieved 2 December 2019.
  12. "1967ВЦ1Т (аналог TMS320C546)" [1967VC1T (corresponding to TMS320C546)] (in Russian). Moscow: PKK Milandr. 20 May 2009. Retrieved 9 January 2017.
  13. "Микропроцессоры и микроконтроллеры" [Microprocessors and microcontrollers] (in Russian). Nizhny Novgorod: MVC. 2014. Archived from the original on 10 May 2017. Retrieved 18 April 2018.
  14. "Двухъядерный микроконтроллер компании "Миландр" для высоконадёжных применений" [Dual-core microcontroller from Company "Milandr" for high-reliability applications](PDF) (in Russian). Moscow: PKK Milandr. Archived from the original (PDF) on 27 April 2016. Retrieved 18 April 2018.
  15. Jan Parthey and Robert Baumgartl, Porting GCC to the TMS320-C6000 DSP Architecture, Appeared in the Proceedings of GSPx’04, Santa Clara, September 2004,
  16. "TI frees its DSP toolchain". Archived from the original on 2013-01-27.
  17. Free DSP Compiler Available Archived 2012-07-30 at archive.today
  18. GCC 4.7 Release Series – Changes, New Features, and Fixes