Tachyonic antitelephone

Last updated

A tachyonic antitelephone is a hypothetical device in theoretical physics that could be used to send signals into one's own past. Albert Einstein in 1907 [1] [2] presented a thought experiment of how faster-than-light signals can lead to a paradox of causality, which was described by Einstein and Arnold Sommerfeld in 1910 as a means "to telegraph into the past". [3] The same thought experiment was described by Richard Chace Tolman in 1917; [4] thus, it is also known as Tolman's paradox.

Contents

A device capable of "telegraphing into the past" was later also called a "tachyonic antitelephone" by Gregory Benford et al. [5] According to current understanding of physics, no such faster-than-light transfer of information is actually possible.

One-way example

This was illustrated in 1911 by Paul Ehrenfest using a Minkowski diagram. Signals are sent in frame B1 into the opposite directions OP and ON with a velocity approaching infinity. Here, event O happens before N. However, in another frame B2, event N happens before O. Ehrenfest Starr3.png
This was illustrated in 1911 by Paul Ehrenfest using a Minkowski diagram. Signals are sent in frame B1 into the opposite directions OP and ON with a velocity approaching infinity. Here, event O happens before N. However, in another frame B2, event N happens before O.

Tolman used the following variation of Einstein's thought experiment: [1] [4] Imagine a distance with endpoints and . Let a signal be sent from A propagating with velocity towards B. All of this is measured in an inertial frame where the endpoints are at rest. The arrival at B is given by:

Here, the event at A is the cause of the event at B. However, in the inertial frame moving with relative velocity v, the time of arrival at B is given according to the Lorentz transformation (c is the speed of light):

It can be easily shown that if a > c, then certain values of v can make Δt' negative. In other words, the effect arises before the cause in this frame. Einstein (and similarly Tolman) concluded that this result contains in their view no logical contradiction; he said, however, it contradicts the totality of our experience so that the impossibility of a > c seems to be sufficiently proven. [1]

Two-way example

A more common variation of this thought experiment is to send back the signal to the sender (a similar one was given by David Bohm [7] ). If Alice (A) is on a spacecraft moving away from the Earth in the positive x-direction with a speed , and she wants to communicate with Bob (B) back home. Assuming both of them have a device that is capable of transmitting and receiving faster-than-light signals at a speed of with . Alice uses this device to send a message to Bob, who sends a reply. If the origin of the coordinates of Bob's reference frame, , coincide with the reception of Alice's message to him, then if Bob immediately sends a message back to Alice, then in his rest frame the coordinates of the reply signal (in natural units so that c=1) are given by:

To find out when the reply is received by Alice, we perform a Lorentz transformation to Alice's frame moving in the positive x-direction with velocity with respect to the Earth. In this frame Alice is at rest at position , where is the distance that the signal Alice sent to Earth traversed in her rest frame. The coordinates of the reply signal are given by:

The reply is received by Alice when . This means that and thus:

Since the message Alice sent to Bob took a time of to reach him, the message she receives back from him will reach her at time:

later than she sent her message. However, if then and Alice will receive the message back from Bob before she sends her message to him in the first place.

Numerical example with two-way communication

As an example, Alice and Bob are aboard spaceships moving inertially with a relative speed of 0.8c. At some point they pass right next to each other, and Alice defines the position and time of their passing to be at position x = 0, time t = 0 in her frame, while Bob defines it to be at position x′ = 0 and time t′ = 0 in his frame (note that this is different from the convention used in the previous section, where the origin of the coordinates was the event of Bob receiving a tachyon signal from Alice). In Alice's frame she remains at rest at position x = 0, while Bob is moving in the positive x direction at 0.8c; in Bob's frame he remains at rest at position x′ = 0, and Alice is moving in the negative x′ direction at 0.8c. Each one also has a tachyon transmitter aboard their ship, which sends out signals that move at 2.4c in the ship's own frame.

When Alice's clock shows that 300 days have elapsed since she passed next to Bob (t = 300 days in her frame), she uses the tachyon transmitter to send a message to Bob, saying "Ugh, I just ate some bad shrimp". At t = 450 days in Alice's frame, she calculates that since the tachyon signal has been traveling away from her at 2.4c for 150 days, it should now be at position x = 2.4×150 = 360 light-days in her frame, and since Bob has been traveling away from her at 0.8c for 450 days, he should now be at position x = 0.8×450 = 360 light-days in her frame as well, meaning that this is the moment the signal catches up with Bob. So, in her frame Bob receives Alice's message at x = 360, t = 450. Due to the effects of time dilation, in her frame Bob is aging more slowly than she is by a factor of , in this case 0.6, so Bob's clock only shows that 0.6×450 = 270 days have elapsed when he receives the message, meaning that in his frame he receives it at x′ = 0, t′ = 270.

When Bob receives Alice's message, he immediately uses his own tachyon transmitter to send a message back to Alice saying "Don't eat the shrimp!". 135 days later in his frame, at t′ = 270 + 135 = 405, he calculates that since the tachyon signal has been traveling away from him at 2.4c in the −x′ direction for 135 days, it should now be at position x′ = −2.4×135 = −324 light-days in his frame, and since Alice has been traveling at 0.8c in the −x direction for 405 days, she should now be at position x′ = −0.8×405 = −324 light-days as well. So, in his frame Alice receives his reply at x′ = −324, t′ = 405. Time dilation for inertial observers is symmetrical, so in Bob's frame Alice is aging more slowly than he is, by the same factor of 0.6, so Alice's clock should only show that 0.6×405 = 243 days have elapsed when she receives his reply. This means that she receives a message from Bob saying "Don't eat the shrimp!" only 243 days after she passed Bob, while she wasn't supposed to send the message saying "Ugh, I just ate some bad shrimp" until 300 days elapsed since she passed Bob, so Bob's reply constitutes a warning about her own future.

These numbers can be double-checked using the Lorentz transformation. The Lorentz transformation says that if the coordinates are known to be xt, of some event in Alice's frame, the same event must have the following x′, t′ coordinates in Bob's frame:

Where v is Bob's speed along the x-axis in Alice's frame, c is the speed of light (we are using units of days for time and light-days for distance, so in these units c = 1), and is the Lorentz factor. In this case v=0.8c, and . In Alice's frame, the event of Alice sending the message happens at x = 0, t = 300, and the event of Bob receiving Alice's message happens at x = 360, t = 450. Using the Lorentz transformation, we find that in Bob's frame the event of Alice sending the message happens at position x′ = (1/0.6)×(0 − 0.8×300) = −400 light-days, and time t′ = (1/0.6)×(300 − 0.8×0) = 500 days. Likewise, in Bob's frame the event of Bob receiving Alice's message happens at position x′ = (1/0.6)×(360 − 0.8×450) = 0 light-days, and time t′ = (1/0.6)×(450 − 0.8×360) = 270 days, which are the same coordinates for Bob's frame that were found in the earlier paragraph.

Comparing the coordinates in each frame, we see that in Alice's frame her tachyon signal moves forwards in time (she sent it at an earlier time than Bob received it), and between being sent and received we have (difference in position)/(difference in time) = 360/150 = 2.4c. In Bob's frame, Alice's signal moves back in time (he received it at t′ = 270, but it was sent at t′ = 500), and it has a (difference in position)/(difference in time) of 400/230, about 1.739c. The fact that the two frames disagree about the order of the events of the signal being sent and received is an example of the relativity of simultaneity, a feature of relativity which has no analogue in classical physics, and which is key to understanding why in relativity FTL communication must necessarily lead to causality violation.

Bob is assumed to have sent his reply almost instantaneously after receiving Alice's message, so the coordinates of his sending the reply can be assumed to be the same: x = 360, t = 450 in Alice's frame, and x′ = 0, t′ = 270 in Bob's frame. If the event of Alice receiving Bob's reply happens at x′ = 0, t′ = 243 in her frame (as in the earlier paragraph), then according to the Lorentz transformation, in Bob's frame Alice receives his reply at position x′' = (1/0.6)×(0 − 0.8×243) = −324 light-days, and at time t′ = (1/0.6)×(243 − 0.8×0) = 405 days. So evidently Bob's reply does move forward in time in his own frame, since the time it was sent was t′ = 270 and the time it was received was t′ = 405. And in his frame (difference in position)/(difference in time) for his signal is 324/135 = 2.4c, exactly the same as the speed of Alice's original signal in her own frame. Likewise, in Alice's frame Bob's signal moves backwards in time (she received it before he sent it), and it has a (difference in position)/(difference in time) of 360/207, about 1.739c.

Thus the times of sending and receiving in each frame, as calculated using the Lorentz transformation, match up with the times given in earlier paragraphs, before we made explicit use of the Lorentz transformation. And by using the Lorentz transformation we can see that the two tachyon signals behave symmetrically in each observer's frame: the observer who sends a given signal measures it to move forward in time at 2.4c, the observer who receives it measures it to move back in time at 1.739c. This sort of possibility for symmetric tachyon signals is necessary if tachyons are to respect the first of the two postulates of special relativity, which says that all laws of physics must work exactly the same in all inertial frames. This implies that if it's possible to send a signal at 2.4c in one frame, it must be possible in any other frame as well, and likewise if one frame can observe a signal that moves backwards in time, any other frame must be able to observe such a phenomenon as well. This is another key idea in understanding why FTL communication leads to causality violation in relativity; if tachyons were allowed to have a "preferred frame" in violation of the first postulate of relativity, in that case it could theoretically be possible to avoid causality violations. [8]

Paradoxes

Benford et al. [5] wrote about such paradoxes in general, offering a scenario in which two parties are able to send a message two hours into the past:

The paradoxes of backward-in-time communication are well known. Suppose A and B enter into the following agreement: A will send a message at three o'clock if and only if he does not receive one at one o'clock. B sends a message to reach A at one o'clock immediately on receiving one from A at three o'clock. Then the exchange of messages will take place if and only if it does not take place. This is a genuine paradox, a causal contradiction.

They concluded that superluminal particles such as tachyons are therefore not allowed to convey signals.

See also

Related Research Articles

<span class="mw-page-title-main">Lorentz transformation</span> Family of linear transformations

In physics, the Lorentz transformations are a six-parameter family of linear transformations from a coordinate frame in spacetime to another frame that moves at a constant velocity relative to the former. The respective inverse transformation is then parameterized by the negative of this velocity. The transformations are named after the Dutch physicist Hendrik Lorentz.

<span class="mw-page-title-main">Special relativity</span> Theory of interwoven space and time by Albert Einstein

In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between space and time. In Albert Einstein's 1905 treatment, the theory is based on two postulates:

  1. The laws of physics are invariant (identical) in all inertial frames of reference.
  2. The speed of light in vacuum is the same for all observers, regardless of the motion of light source or observer.
<span class="mw-page-title-main">Spacetime</span> Mathematical model combining space and time

In physics, spacetime is any mathematical model that fuses the three dimensions of space and the one dimension of time into a single four dimensional continuum. Spacetime diagrams are useful in visualizing and understanding relativistic effects such as how different observers perceive where and when events occur.

A tachyon or tachyonic particle is a hypothetical particle that always travels faster than light. Physicists believe that faster-than-light particles cannot exist because they are inconsistent with the known laws of physics. If such particles did exist they could be used to send signals faster than light. According to the theory of relativity this would violate causality, leading to logical paradoxes such as the grandfather paradox. Tachyons would exhibit the unusual property of increasing in speed as their energy decreases, and would require infinite energy to slow down to the speed of light. No verifiable experimental evidence for the existence of such particles has been found.

In physics, in particular in special relativity and general relativity, a four-velocity is a four-vector in four-dimensional spacetime that represents the relativistic counterpart of velocity, which is a three-dimensional vector in space.

<span class="mw-page-title-main">Time dilation</span> Measured time difference as explained by relativity theory

Time dilation is the difference in elapsed time as measured by two clocks, either due to a relative velocity between them or due to a difference in gravitational potential between their locations. When unspecified, "time dilation" usually refers to the effect due to velocity.

<span class="mw-page-title-main">Length contraction</span> Contraction of length in the direction of propagation in Minkowski space

Length contraction is the phenomenon that a moving object's length is measured to be shorter than its proper length, which is the length as measured in the object's own rest frame. It is also known as Lorentz contraction or Lorentz–FitzGerald contraction and is usually only noticeable at a substantial fraction of the speed of light. Length contraction is only in the direction in which the body is travelling. For standard objects, this effect is negligible at everyday speeds, and can be ignored for all regular purposes, only becoming significant as the object approaches the speed of light relative to the observer.

The Lorentz factor or Lorentz term is a quantity expressing how much the measurements of time, length, and other physical properties change for an object while that object is moving. The expression appears in several equations in special relativity, and it arises in derivations of the Lorentz transformations. The name originates from its earlier appearance in Lorentzian electrodynamics – named after the Dutch physicist Hendrik Lorentz.

<span class="mw-page-title-main">Thomas precession</span> Relativistic correction

In physics, the Thomas precession, named after Llewellyn Thomas, is a relativistic correction that applies to the spin of an elementary particle or the rotation of a macroscopic gyroscope and relates the angular velocity of the spin of a particle following a curvilinear orbit to the angular velocity of the orbital motion.

<span class="mw-page-title-main">Bell's spaceship paradox</span> Thought experiment in special relativity

Bell's spaceship paradox is a thought experiment in special relativity. It was first described by E. Dewan and M. Beran in 1959 but became more widely known after John Stewart Bell elaborated the idea further in 1976. A delicate thread hangs between two spaceships headed in the same direction. They start accelerating simultaneously and equally as measured in the inertial frame S, thus having the same velocity at all times as viewed from S. Therefore, they are all subject to the same Lorentz contraction, so the entire assembly seems to be equally contracted in the S frame with respect to the length at the start. At first sight, it might appear that the thread will not break during acceleration.

<span class="mw-page-title-main">Relativity of simultaneity</span> Concept that distant simultaneity is not absolute, but depends on the observers reference frame

In physics, the relativity of simultaneity is the concept that distant simultaneity – whether two spatially separated events occur at the same time – is not absolute, but depends on the observer's reference frame. This possibility was raised by mathematician Henri Poincaré in 1900, and thereafter became a central idea in the special theory of relativity.

<span class="mw-page-title-main">Rapidity</span> Measure of relativistic velocity

In relativity, rapidity is commonly used as a measure for relativistic velocity. Mathematically, rapidity can be defined as the hyperbolic angle that differentiates two frames of reference in relative motion, each frame being associated with distance and time coordinates.

<span class="mw-page-title-main">Moving magnet and conductor problem</span> Thought experiment in physics

The moving magnet and conductor problem is a famous thought experiment, originating in the 19th century, concerning the intersection of classical electromagnetism and special relativity. In it, the current in a conductor moving with constant velocity, v, with respect to a magnet is calculated in the frame of reference of the magnet and in the frame of reference of the conductor. The observable quantity in the experiment, the current, is the same in either case, in accordance with the basic principle of relativity, which states: "Only relative motion is observable; there is no absolute standard of rest". However, according to Maxwell's equations, the charges in the conductor experience a magnetic force in the frame of the magnet and an electric force in the frame of the conductor. The same phenomenon would seem to have two different descriptions depending on the frame of reference of the observer.

Bondi k-calculus is a method of teaching special relativity popularised by Sir Hermann Bondi, that has been used in university-level physics classes, and in some relativity textbooks.

The history of Lorentz transformations comprises the development of linear transformations forming the Lorentz group or Poincaré group preserving the Lorentz interval and the Minkowski inner product .

<span class="mw-page-title-main">Spacetime diagram</span> Graph of space and time in special relativity

A spacetime diagram is a graphical illustration of the properties of space and time in the special theory of relativity. Spacetime diagrams allow a qualitative understanding of the corresponding phenomena like time dilation and length contraction without mathematical equations.

A synchronous frame is a reference frame in which the time coordinate defines proper time for all co-moving observers. It is built by choosing some constant time hypersurface as an origin, such that has in every point a normal along the time line and a light cone with an apex in that point can be constructed; all interval elements on this hypersurface are space-like. A family of geodesics normal to this hypersurface are drawn and defined as the time coordinates with a beginning at the hypersurface. In terms of metric-tensor components , a synchronous frame is defined such that

When using the term 'the speed of light' it is sometimes necessary to make the distinction between its one-way speed and its two-way speed. The "one-way" speed of light, from a source to a detector, cannot be measured independently of a convention as to how to synchronize the clocks at the source and the detector. What can however be experimentally measured is the round-trip speed from the source to a mirror and back again to detector. Albert Einstein chose a synchronization convention that made the one-way speed equal to the two-way speed. The constancy of the one-way speed in any given inertial frame is the basis of his special theory of relativity, although all experimentally verifiable predictions of this theory do not depend on that convention.

<span class="mw-page-title-main">Derivations of the Lorentz transformations</span>

There are many ways to derive the Lorentz transformations utilizing a variety of physical principles, ranging from Maxwell's equations to Einstein's postulates of special relativity, and mathematical tools, spanning from elementary algebra and hyperbolic functions, to linear algebra and group theory.

Accelerations in special relativity (SR) follow, as in Newtonian Mechanics, by differentiation of velocity with respect to time. Because of the Lorentz transformation and time dilation, the concepts of time and distance become more complex, which also leads to more complex definitions of "acceleration". SR as the theory of flat Minkowski spacetime remains valid in the presence of accelerations, because general relativity (GR) is only required when there is curvature of spacetime caused by the energy–momentum tensor. However, since the amount of spacetime curvature is not particularly high on Earth or its vicinity, SR remains valid for most practical purposes, such as experiments in particle accelerators.

References

  1. 1 2 3 Einstein, Albert (1907). "Über das Relativitätsprinzip und die aus demselben gezogenen Folgerungen" [On the relativity principle and the conclusions drawn from it](PDF). Jahrbuch der Radioaktivität und Elektronik. 4: 411–462. Retrieved 2 August 2015.
  2. Einstein, Albert (1990). "On the relativity principle and the conclusions drawn from it". In Stachel, John; Cassidy, David C; Renn, Jürgen; et al. (eds.). The Collected Papers of Albert Einstein, Volume 2: The Swiss Years: Writings, 1900-1909. Princeton: Princeton University Press. p. 252. ISBN   9780691085265 . Retrieved 2 August 2015.
  3. Miller, A.I. (1981), Albert Einstein's special theory of relativity. Emergence (1905) and early interpretation (1905–1911) , Reading: Addison–Wesley, ISBN   0-201-04679-2
  4. 1 2 R. C. Tolman (1917). "Velocities greater than that of light". The theory of the Relativity of Motion. University of California Press. p. 54. OCLC   13129939.
  5. 1 2 Gregory Benford; D. L. Book; W. A. Newcomb (1970). "The Tachyonic Antitelephone" (PDF). Physical Review D . 2 (2): 263–265. Bibcode:1970PhRvD...2..263B. doi:10.1103/PhysRevD.2.263. S2CID   121124132. Archived from the original (PDF) on 2020-02-07.
  6. Ehrenfest, P. (1911). "Zu Herrn v. Ignatowskys Behandlung der Bornschen Starrheitsdefinition II" [ On v. Ignatowsky's Treatment of Born's Definition of Rigidity II ]. Physikalische Zeitschrift. 12: 412–413.
  7. David Bohm, The Special Theory of Relativity, New York: W.A. Benjamin., 1965
  8. Kowalczyński, Jerzy (January 1984). "Critical comments on the discussion about tachyonic causal paradoxes and on the concept of superluminal reference frame". International Journal of Theoretical Physics . Springer Science+Business Media. 23 (1): 27–60. Bibcode:1984IJTP...23...27K. doi:10.1007/BF02080670. S2CID   121316135.