Timing advance

Last updated

In the GSM cellular mobile phone standard, timing advance (TA) value corresponds to the length of time a signal takes to reach the base station from a mobile phone. GSM uses TDMA technology in the radio interface to share a single frequency between several users, assigning sequential timeslots to the individual users sharing a frequency. Each user transmits periodically for less than one-eighth of the time within one of the eight timeslots. Since the users are at various distances from the base station and radio waves travel at the finite speed of light, the precise arrival-time within the slot can be used by the base station to determine the distance to the mobile phone. The time at which the phone is allowed to transmit a burst of traffic within a timeslot must be adjusted accordingly to prevent collisions with adjacent users. Timing Advance (TA) is the variable controlling this adjustment.

Technical Specifications 3GPP TS 05.10 [1] and TS 45.010 [2] describe the TA value adjustment procedures. The TA value is normally between 0 and 63, with each step representing an advance of one bit period (approximately 3.69 microseconds). With radio waves travelling at about 300,000,000 metres per second (that is 300 metres per microsecond), one TA step then represents a change in round-trip distance (twice the propagation range) of about 1,100 metres. This means that the TA value changes for each 550-metre change in the range between a mobile and the base station. This limit of 63 × 550 metres is the maximum 35 kilometres that a device can be from a base station and is the upper bound on cell placement distance.

A continually adjusted TA value avoids interference to and from other users in adjacent timeslots, thereby minimizing data loss and maintaining Mobile QoS (call quality-of-service).

Timing Advance is significant for privacy and communications security, as its combination with other variables can allow GSM localization to find the device's position and track the mobile phone user. TA is also used to adjust transmission power in space-division multiple access systems.

This limited the original range of a GSM cell site to 35 km as mandated by the duration of the standard timeslots defined in the GSM specification. The maximum distance is given by the maximum time that the signal from the mobile/BTS needs to reach the receiver of the mobile/BTS on time to be successfully heard. At the air interface the delay between the transmission of the downlink (BTS) and the uplink (mobile) has an offset of 3 timeslots. Until now the mobile station has used a timing advance to compensate for the propagation delay as the distance to the BTS changes. The timing advance values are coded by 6 bits, which gives the theoretical maximum BTS/mobile separation as 35 km.

By implementing the Extended Range feature, the BTS is able to receive the uplink signal in two adjacent timeslots instead of one. When the mobile station reaches its maximum timing advance, i.e. maximum range, the BTS expands its hearing window with an internal timing advance that gives the necessary time for the mobile to be heard by the BTS even from the extended distance. This extra advance is the duration of a single timeslot, a 156 bit period. This gives roughly 120 km range for a cell. [3] and is implemented in sparsely populated areas and to reach islands for example.

Related Research Articles

Enhanced Data rates for GSM Evolution Digital mobile phone technology

Enhanced Data rates for GSM Evolution (EDGE) also known as Enhanced GPRS (EGPRS), IMT Single Carrier (IMT-SC), or Enhanced Data rates for Global Evolution) is a digital mobile phone technology that allows improved data transmission rates as a backward-compatible extension of GSM. EDGE is considered a pre-3G radio technology and is part of ITU's 3G definition. EDGE was deployed on GSM networks beginning in 2003 – initially by Cingular in the United States.

GSM Cellular telephone network standard

The Global System for Mobile Communications (GSM) is a standard developed by the European Telecommunications Standards Institute (ETSI) to describe the protocols for second-generation (2G) digital cellular networks used by mobile devices such as mobile phones and tablets. It was first deployed in Finland in December 1991. By the mid-2010s, it became a global standard for mobile communications achieving over 90% market share, and operating in over 193 countries and territories.

General Packet Radio Service Packet oriented mobile data service on 2G and 3G

General Packet Radio Service (GPRS) is a packet oriented mobile data standard on the 2G and 3G cellular communication network's global system for mobile communications (GSM). GPRS was established by European Telecommunications Standards Institute (ETSI) in response to the earlier CDPD and i-mode packet-switched cellular technologies. It is now maintained by the 3rd Generation Partnership Project (3GPP).

Time-division multiple access Channel access method for networks using a shared communications medium

Time-division multiple access (TDMA) is a channel access method for shared-medium networks. It allows several users to share the same frequency channel by dividing the signal into different time slots. The users transmit in rapid succession, one after the other, each using its own time slot. This allows multiple stations to share the same transmission medium while using only a part of its channel capacity. Dynamic TDMA is a TDMA variant that dynamically reserves a variable number of time slots in each frame to variable bit-rate data streams, based on the traffic demand of each data stream.

The Universal Mobile Telecommunications System (UMTS) is a third generation mobile cellular system for networks based on the GSM standard. Developed and maintained by the 3GPP, UMTS is a component of the International Telecommunication Union IMT-2000 standard set and compares with the CDMA2000 standard set for networks based on the competing cdmaOne technology. UMTS uses wideband code-division multiple access (W-CDMA) radio access technology to offer greater spectral efficiency and bandwidth to mobile network operators.

Space-division multiple access Channel-access method in communications

Space-division multiple access (SDMA) is a channel access method based on creating parallel spatial pipes using advanced antenna technology next to higher capacity pipes through spatial multiplexing and/or diversity, by which it is able to offer superior performance in radio multiple access communication systems. In traditional mobile cellular network systems, the base station has no information on the position of the mobile units within the cell and radiates the signal in all directions within the cell in order to provide radio coverage. This method results in wasting power on transmissions when there are no mobile units to reach, in addition to causing interference for adjacent cells using the same frequency, so called co-channel cells. Likewise, in reception, the antenna receives signals coming from all directions including noise and interference signals. By using smart antenna technology and differing spatial locations of mobile units within the cell, space-division multiple access techniques offer attractive performance enhancements. The radiation pattern of the base station, both in transmission and reception, is adapted to each user to obtain highest gain in the direction of that user. This is often done using phased array techniques.

The GPRS core network is the central part of the general packet radio service (GPRS) which allows 2G, 3G and WCDMA mobile networks to transmit IP packets to external networks such as the Internet. The GPRS system is an integrated part of the GSM network switching subsystem.

Mobility management is one of the major functions of a GSM or a UMTS network that allows mobile phones to work. The aim of mobility management is to track where the subscribers are, allowing calls, SMS and other mobile phone services to be delivered to them.

Network switching subsystem (NSS) is the component of a GSM system that carries out call out and mobility management functions for mobile phones roaming on the network of base stations. It is owned and deployed by mobile phone operators and allows mobile devices to communicate with each other and telephones in the wider public switched telephone network (PSTN). The architecture contains specific features and functions which are needed because the phones are not fixed in one location.

<span class="mw-page-title-main">E-UTRA</span> 3GPP interface

E-UTRA is the air interface of 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) upgrade path for mobile networks. It is an acronym for Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access, also referred to as the 3GPP work item on the Long Term Evolution (LTE) also known as the Evolved Universal Terrestrial Radio Access (E-UTRA) in early drafts of the 3GPP LTE specification. E-UTRAN is the initialism of Evolved UMTS Terrestrial Radio Access Network and is the combination of E-UTRA, user equipment (UE), and E-UTRAN Node B or Evolved Node B (eNodeB).

<span class="mw-page-title-main">High Speed Packet Access</span> Communications protocols

High Speed Packet Access (HSPA) is an amalgamation of two mobile protocols, High Speed Downlink Packet Access (HSDPA) and High Speed Uplink Packet Access (HSUPA), that extends and improves the performance of existing 3G mobile telecommunication networks using the WCDMA protocols. A further improved 3GPP standard, Evolved High Speed Packet Access, was released late in 2008 with subsequent worldwide adoption beginning in 2010. The newer standard allows bit-rates to reach as high as 337 Mbit/s in the downlink and 34 Mbit/s in the uplink. However, these speeds are rarely achieved in practice.

In GSM cellular networks, an absolute radio-frequency channel number (ARFCN) is a code that specifies a pair of physical radio carriers used for transmission and reception in a land mobile radio system, one for the uplink signal and one for the downlink signal. ARFCNs for GSM are defined in Specification 45.005 Section 2. There are also other variants of the ARFCN numbering scheme that are in use for other systems that are not GSM. One such example is the TETRA system that has 25 kHz channel spacing and uses different base frequencies for numbering.

Evolved High Speed Packet Access Technical standard

Evolved High Speed Packet Access, HSPA+, HSPA (Plus) or HSPAP, is a technical standard for wireless broadband telecommunication. It is the second phase of HSPA which has been introduced in 3GPP release 7 and being further improved in later 3GPP releases. HSPA+ can achieve data rates of up to 42.2 Mbit/s. It introduces antenna array technologies such as beamforming and multiple-input multiple-output communications (MIMO). Beam forming focuses the transmitted power of an antenna in a beam towards the user's direction. MIMO uses multiple antennas at the sending and receiving side. Further releases of the standard have introduced dual carrier operation, i.e. the simultaneous use of two 5 MHz carriers. HSPA+ is an evolution of HSPA that upgrades the existing 3G network and provides a method for telecom operators to migrate towards 4G speeds that are more comparable to the initially available speeds of newer LTE networks without deploying a new radio interface. HSPA+ should not be confused with LTE though, which uses an air interface based on orthogonal frequency-division modulation and multiple access.

The 3GPP has defined the Voice Call Continuity (VCC) specifications in order to describe how a voice call can be persisted, as a mobile phone moves between circuit switched and packet switched radio domains.

Dual Transfer Mode (DTM) is a protocol based on the GSM standard that makes simultaneous transfer of Circuit switched (CS) voice and Packet switched (PS) data over the same radio channel (ARFCN) simpler. Without DTM, the mobile device must be capable of reception and transmission simultaneously (full-duplex) requiring complex and expensive circuitry in the mobile terminal. With DTM this requirement doesn't exist and makes the device implementation simpler and cheaper. DTM is a 3GPP feature introduced in R4 of the specification series.

The Um interface is the air interface for the GSM mobile telephone standard. It is the interface between the mobile station (MS) and the Base transceiver station (BTS). It is called Um because it is the mobile analog to the U interface of ISDN. Um is defined in the GSM 04.xx and 05.xx series of specifications. Um can also support GPRS packet-oriented communication.

Cell Global Identity (CGI) is a globally unique identifier for a Base Transceiver Station in mobile phone networks. It consists of four parts: Mobile Country Code (MCC), Mobile Network Code (MNC), Location Area Code (LAC) and Cell Identification (CI). It is an integral part of 3GPP specifications for mobile networks, for example, for identifying individual base stations to "handover" ongoing phone calls between separately controlled base stations, or between different mobile technologies.

GSM radio frequency optimization is the optimization of GSM radio frequencies. GSM network consist of different cells and each cell transmit signals to and receive signals from the mobile station, for proper working of base station many parameters are defined before functioning the base station such as the coverage area of a cell depends on different factors including the transmitting power of the base station, obstructing buildings in cells, height of the base station and location of base station. Radio Frequency Optimization is a process through which different soft and hard parameters of the Base transceiver stations are changed in order to improve the coverage area and improve quality of signal. Besides that there are various key performance indicators which have to be constantly monitored and necessary changes proposed in order to keep KPIs in agreed limits with the mobile operator.

GSM 03.40 or 3GPP TS 23.040 is a mobile telephony standard describing the format of the Transfer Protocol Data Units (TPDU) of the Short Message Transfer Protocol (SM-TP) used in the GSM networks to carry Short Messages. This format is used throughout the whole transfer of the message in the GSM mobile network. In contrast, application servers use different protocols, like Short Message Peer-to-Peer or Universal Computer Protocol, to exchange messages between them and the Short Message Service Center (SMSC).

Frequency bands for 5G New Radio, which is the air interface or radio access technology of the 5G mobile networks, are separated into two different frequency ranges. First there is Frequency Range 1 (FR1), which includes sub-6 GHz frequency bands, some of which are traditionally used by previous standards, but has been extended to cover potential new spectrum offerings from 410 MHz to 7125 MHz. The other is Frequency Range 2 (FR2), which includes frequency bands from 24.25 GHz to 71.0 GHz.

References

  1. http://www.3gpp.org/ftp/Specs/archive/05_series/05.10/0510-8c0.zip [ bare URL non-HTML file ]
  2. http://www.3gpp.org/ftp/Specs/archive/45_series/45.010/45010-a00.zip [ bare URL non-HTML file ]
  3. "AllBusiness: Unexpected Error Condition". www.allbusiness.com. Archived from the original on January 23, 2011.