Torsion group

Last updated

In group theory, a branch of mathematics, a torsion group or a periodic group is a group in which every element has finite order. The exponent of such a group, if it exists, is the least common multiple of the orders of the elements.

Contents

For example, it follows from Lagrange's theorem that every finite group is periodic and it has an exponent that divides its order.

Infinite examples

Examples of infinite periodic groups include the additive group of the ring of polynomials over a finite field, and the quotient group of the rationals by the integers, as well as their direct summands, the Prüfer groups. Another example is the direct sum of all dihedral groups. None of these examples has a finite generating set. Explicit examples of finitely generated infinite periodic groups were constructed by Golod, [1] based on joint work with Shafarevich (see Golod–Shafarevich theorem ), and by Aleshin [2] and Grigorchuk [3] using automata. These groups have infinite exponent; examples with finite exponent are given for instance by Tarski monster groups constructed by Olshanskii. [4]

Burnside's problem

Burnside's problem is a classical question that deals with the relationship between periodic groups and finite groups, when only finitely generated groups are considered: Does specifying an exponent force finiteness? The existence of infinite, finitely generated periodic groups as in the previous paragraph shows that the answer is "no" for an arbitrary exponent. Though much more is known about which exponents can occur for infinite finitely generated groups there are still some for which the problem is open.

For some classes of groups, for instance linear groups, the answer to Burnside's problem restricted to the class is positive.

Mathematical logic

An interesting property of periodic groups is that the definition cannot be formalized in terms of first-order logic. This is because doing so would require an axiom of the form

which contains an infinite disjunction and is therefore inadmissible: first order logic permits quantifiers over one type and cannot capture properties or subsets of that type. It is also not possible to get around this infinite disjunction by using an infinite set of axioms: the compactness theorem implies that no set of first-order formulae can characterize the periodic groups. [5]

The torsion subgroup of an abelian group A is the subgroup of A that consists of all elements that have finite order. A torsion abelian group is an abelian group in which every element has finite order. A torsion-free abelian group is an abelian group in which the identity element is the only element with finite order.

See also

Related Research Articles

<span class="mw-page-title-main">Abelian group</span> Commutative group (mathematics)

In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian groups, and the concept of an abelian group may be viewed as a generalization of these examples. Abelian groups are named after early 19th century mathematician Niels Henrik Abel.

<span class="mw-page-title-main">Cyclic group</span> Mathematical group that can be generated as the set of powers of a single element

In group theory, a branch of abstract algebra in pure mathematics, a cyclic group or monogenous group is a group, denoted Cn, that is generated by a single element. That is, it is a set of invertible elements with a single associative binary operation, and it contains an element g such that every other element of the group may be obtained by repeatedly applying the group operation to g or its inverse. Each element can be written as an integer power of g in multiplicative notation, or as an integer multiple of g in additive notation. This element g is called a generator of the group.

In abstract algebra, an abelian group is called finitely generated if there exist finitely many elements in such that every in can be written in the form for some integers . In this case, we say that the set is a generating set of or that generate.

<span class="mw-page-title-main">Burnside problem</span> If G is a finitely generated group with exponent n, is G necessarily finite?

The Burnside problem asks whether a finitely generated group in which every element has finite order must necessarily be a finite group. It was posed by William Burnside in 1902, making it one of the oldest questions in group theory and was influential in the development of combinatorial group theory. It is known to have a negative answer in general, as Evgeny Golod and Igor Shafarevich provided a counter-example in 1964. The problem has many refinements and variants that differ in the additional conditions imposed on the orders of the group elements, some of which are still open questions.

<span class="mw-page-title-main">Faltings's theorem</span> Curves of genus > 1 over the rationals have only finitely many rational points

Faltings's theorem is a result in arithmetic geometry, according to which a curve of genus greater than 1 over the field of rational numbers has only finitely many rational points. This was conjectured in 1922 by Louis Mordell, and known as the Mordell conjecture until its 1983 proof by Gerd Faltings. The conjecture was later generalized by replacing by any number field.

In mathematics, the rank, Prüfer rank, or torsion-free rank of an abelian group A is the cardinality of a maximal linearly independent subset. The rank of A determines the size of the largest free abelian group contained in A. If A is torsion-free then it embeds into a vector space over the rational numbers of dimension rank A. For finitely generated abelian groups, rank is a strong invariant and every such group is determined up to isomorphism by its rank and torsion subgroup. Torsion-free abelian groups of rank 1 have been completely classified. However, the theory of abelian groups of higher rank is more involved.

<span class="mw-page-title-main">Order (group theory)</span> Cardinality of a mathematical group, or of the subgroup generated by an element

In mathematics, the order of a finite group is the number of its elements. If a group is not finite, one says that its order is infinite. The order of an element of a group is the order of the subgroup generated by the element. If the group operation is denoted as a multiplication, the order of an element a of a group, is thus the smallest positive integer m such that am = e, where e denotes the identity element of the group, and am denotes the product of m copies of a. If no such m exists, the order of a is infinite.

In the mathematical subject of geometric group theory, the growth rate of a group with respect to a symmetric generating set describes how fast a group grows. Every element in the group can be written as a product of generators, and the growth rate counts the number of elements that can be written as a product of length n.

In geometric group theory, Gromov's theorem on groups of polynomial growth, first proved by Mikhail Gromov, characterizes finitely generated groups of polynomial growth, as those groups which have nilpotent subgroups of finite index.

In mathematics, the von Neumann conjecture stated that a group G is non-amenable if and only if G contains a subgroup that is a free group on two generators. The conjecture was disproved in 1980.

In the area of modern algebra known as group theory, a Tarski monster group, named for Alfred Tarski, is an infinite group G, such that every proper subgroup H of G, other than the identity subgroup, is a cyclic group of order a fixed prime number p. A Tarski monster group is necessarily simple. It was shown by Alexander Yu. Olshanskii in 1979 that Tarski groups exist, and that there is a Tarski p-group for every prime p > 1075. They are a source of counterexamples to conjectures in group theory, most importantly to Burnside's problem and the von Neumann conjecture.

In mathematics, specifically in ring theory, a torsion element is an element of a module that yields zero when multiplied by some non-zero-divisor of the ring. The torsion submodule of a module is the submodule formed by the torsion elements. A torsion module is a module that equals its torsion submodule. A module is torsion-free if its torsion submodule comprises only the zero element.

In mathematics, a matrix group is a group G consisting of invertible matrices over a specified field K, with the operation of matrix multiplication. A linear group is a group that is isomorphic to a matrix group.

In mathematics, the Golod–Shafarevich theorem was proved in 1964 by Evgeny Golod and Igor Shafarevich. It is a result in non-commutative homological algebra which solves the class field tower problem, by showing that class field towers can be infinite.

In mathematics, a group is called boundedly generated if it can be expressed as a finite product of cyclic subgroups. The property of bounded generation is also closely related with the congruence subgroup problem.

In the mathematical area of group theory, the Grigorchuk group or the first Grigorchuk group is a finitely generated group constructed by Rostislav Grigorchuk that provided the first example of a finitely generated group of intermediate growth. The group was originally constructed by Grigorchuk in a 1980 paper and he then proved in a 1984 paper that this group has intermediate growth, thus providing an answer to an important open problem posed by John Milnor in 1968. The Grigorchuk group remains a key object of study in geometric group theory, particularly in the study of the so-called branch groups and automata groups, and it has important connections with the theory of iterated monodromy groups.

In the mathematical subject of group theory, small cancellation theory studies groups given by group presentations satisfying small cancellation conditions, that is where defining relations have "small overlaps" with each other. Small cancellation conditions imply algebraic, geometric and algorithmic properties of the group. Finitely presented groups satisfying sufficiently strong small cancellation conditions are word hyperbolic and have word problem solvable by Dehn's algorithm. Small cancellation methods are also used for constructing Tarski monsters, and for solutions of Burnside's problem.

In mathematics, two Prüfer theorems, named after Heinz Prüfer, describe the structure of certain infinite abelian groups. They have been generalized by L. Ya. Kulikov.

Evgenii Solomonovich Golod was a Russian mathematician who proved the Golod–Shafarevich theorem on class field towers. As an application, he gave a negative solution to the Kurosh–Levitzky problem on the nilpotency of finitely generated nil algebras, and so to a weak form of Burnside's problem.

In mathematics, Shafarevich's theorem states that any finite solvable group is the Galois group of some finite extension of the rational numbers. It was first proved by Igor Shafarevich (1954), though Alexander Schmidt later pointed out a gap in the proof, which was fixed by Shafarevich (1989).

References

  1. E. S. Golod, On nil-algebras and finitely approximable p-groups, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964) 273–276.
  2. S. V. Aleshin, Finite automata and the Burnside problem for periodic groups, (Russian) Mat. Zametki 11 (1972), 319–328.
  3. R. I. Grigorchuk, On Burnside's problem on periodic groups, Functional Anal. Appl. 14 (1980), no. 1, 41–43.
  4. A. Yu. Olshanskii, An infinite group with subgroups of prime orders, Math. USSR Izv. 16 (1981), 279–289; translation of Izvestia Akad. Nauk SSSR Ser. Matem. 44 (1980), 309–321
  5. Ebbinghaus, H.-D.; Flum, J.; Thomas, W. (1994). Mathematical logic (2. ed., 4. pr. ed.). New York [u.a.]: Springer. pp.  50. ISBN   978-0-387-94258-2 . Retrieved 18 July 2012. However, in first-order logic we may not form infinitely long disjunctions. Indeed, we shall later show that there is no set of first-order formulas whose models are precisely the periodic groups.