Tris(trimethylsilyl)methane

Last updated
Tris(trimethylsilyl)methane
Tms3CH.svg
Names
Preferred IUPAC name
Methanetriyltris(trimethylsilane)
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.154.179 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
  • InChI=1S/C10H28Si3/c1-11(2,3)10(12(4,5)6)13(7,8)9/h10H,1-9H3
    Key: BNZSPXKCIAAEJK-UHFFFAOYSA-N
  • C[Si](C)(C)C([Si](C)(C)C)[Si](C)(C)C
Properties
C10H28Si3
Molar mass 232.589 g·mol−1
Appearancecolorless liquid
Density 0.827 g/cm3
Boiling point 219 °C (426 °F; 492 K)
Hazards
GHS labelling:
GHS-pictogram-exclam.svg
Warning
H315, H319, H335
P261, P264, P271, P280, P302+P352, P304+P340, P305+P351+P338, P312, P321, P332+P313, P337+P313, P362, P403+P233, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Tris(trimethylsilyl)methane is the organosilicon compound with the formula (tms)3CH (where tms = (CH3)3Si). It is a colorless liquid that is highly soluble in hydrocarbon solvents. Reaction of tris(trimethylsilyl)methane with methyl lithium gives tris(trimethylsilyl)methyllithium, called trisyllithium. Trisyllithium is useful in Petersen olefination reactions: [1]

(tms)3CH + CH3Li → (tms)3CLi + CH4
(tms)3CLi + R2CO → (tms)2C=CR2 + tmsOLi

Trisyllithium is also an effective precursor to bulky ligands. Some tris(trimethylsilyl)methyl derivatives are far more stable than less substituted derivatives. for example (Me3Si)3CTeH is a well-behaved tellurol. [2]

Structure of [InC(tms)3]4, an In(I) tetrahedrane (dark gray = In, orange = Si). YUZZOI.svg
Structure of [InC(tms)3]4, an In(I) tetrahedrane (dark gray = In, orange = Si).

See also

Related Research Articles

<span class="mw-page-title-main">Tetrahedrane</span> Hypothetical organic molecule with a tetrahedral structure

Tetrahedrane is a hypothetical platonic hydrocarbon with chemical formula C4H4 and a tetrahedral structure. The molecule would be subject to considerable angle strain and has not been synthesized as of 2023. However, a number of derivatives have been prepared. In a more general sense, the term tetrahedranes is used to describe a class of molecules and ions with related structure, e.g. white phosphorus.

<span class="mw-page-title-main">Silabenzene</span> Chemical compound

A silabenzene is a heteroaromatic compound containing one or more silicon atoms instead of carbon atoms in benzene. A single substitution gives silabenzene proper; additional substitutions give a disilabenzene, trisilabenzene, etc.

<span class="mw-page-title-main">Europium(III) chloride</span> Chemical compound

Europium(III) chloride is an inorganic compound with the formula EuCl3. The anhydrous compound is a yellow solid. Being hygroscopic it rapidly absorbs water to form a white crystalline hexahydrate, EuCl3·6H2O, which is colourless. The compound is used in research.

<span class="mw-page-title-main">Trimethylsilyl group</span> Functional group

A trimethylsilyl group (abbreviated TMS) is a functional group in organic chemistry. This group consists of three methyl groups bonded to a silicon atom [−Si(CH3)3], which is in turn bonded to the rest of a molecule. This structural group is characterized by chemical inertness and a large molecular volume, which makes it useful in a number of applications.

Diphosphene is a type of organophosphorus compound that has a phosphorus–phosphorus double bond, denoted by R-P=P-R'. These compounds are not common but are of theoretical interest. Normally, compounds with the empirical formula RP exist as rings. However, like other multiple bonds between heavy main-group elements, P=P double bonds can be stabilized by a large steric hindrance from the substitutions. The first isolated diphosphene bis(2,4,6-tri-tert-butylphenyl)diphosphene was exemplified by Masaaki Yoshifuji and his coworkers in 1981, in which diphosphene is stabilized by two bulky phenyl group.

<span class="mw-page-title-main">Trimethylsilyl chloride</span> Organosilicon compound with the formula (CH3)3SiCl

Trimethylsilyl chloride, also known as chlorotrimethylsilane is an organosilicon compound, with the formula (CH3)3SiCl, often abbreviated Me3SiCl or TMSCl. It is a colourless volatile liquid that is stable in the absence of water. It is widely used in organic chemistry.

<span class="mw-page-title-main">Organosilicon chemistry</span> Organometallic compound containing carbon–silicon bonds

Organosilicon chemistry is the study of organometallic compounds containing carbon–silicon bonds, to which they are called organosilicon compounds. Most organosilicon compounds are similar to the ordinary organic compounds, being colourless, flammable, hydrophobic, and stable to air. Silicon carbide is an inorganic compound.

<span class="mw-page-title-main">Bis(trimethylsilyl)acetamide</span> Chemical compound

Bis(trimethylsilyl)acetamide (BSA) is an organosilicon compound with the formula MeC(OSiMe3)NSiMe3 (Me = CH3). It is a colorless liquid that is soluble in diverse organic solvents, but reacts rapidly with moisture and solvents containing OH and NH groups. It is used in analytical chemistry to increase the volatility of analytes, e.g., for gas chromatography. It is also used to introduce the trimethylsilyl protecting group in organic synthesis. A related reagent is N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA).

Silylation is the introduction of one or more (usually) substituted silyl groups (R3Si) to a molecule. Silylations are core methods for production of organosilicon chemistry. Silanization involves similar methods but usually refers to attachment of silyl groups to solids.

<span class="mw-page-title-main">Organoindium chemistry</span> Chemistry of compounds with a carbon to indium bond

Organoindium chemistry is the chemistry of compounds containing In-C bonds. The main application of organoindium chemistry is in the preparation of semiconducting components for microelectronic applications. The area is also of some interest in organic synthesis. Most organoindium compounds feature the In(III) oxidation state, akin to its lighter congeners Ga(III) and B(III).

<span class="mw-page-title-main">Bis(trimethylsilyl)acetylene</span> Chemical compound

Bis(trimethylsilyl)acetylene (BTMSA) is an organosilicon compound with the formula Me3SiC≡CSiMe3 (Me = methyl). It is a colorless liquid that is soluble in organic solvents. This compound is used as a surrogate for acetylene.

<span class="mw-page-title-main">Tellurol</span>

Tellurols are analogues of alcohols and phenols where tellurium replaces oxygen. Tellurols, selenols, and thiols have similar properties, but tellurols are the least stable. Although they are fundamental representatives of organotellurium compounds, tellurols are lightly studied because of their instability. Tellurol derivatives include telluroesters and tellurocyanates (RTeCN).

<span class="mw-page-title-main">Metal bis(trimethylsilyl)amides</span>

Metal bis(trimethylsilyl)amides are coordination complexes composed of a cationic metal M with anionic bis(trimethylsilyl)amide ligands (the N 2 monovalent anion, or −N 2 monovalent group, and are part of a broader category of metal amides.

<span class="mw-page-title-main">Trimethylsilyl iodide</span> Chemical compound

Trimethylsilyl iodide (iodotrimethylsilane or TMSI) is an organosilicon compound with the chemical formula (CH3)3SiI. It is a colorless, volatile liquid at room temperature.

<span class="mw-page-title-main">Tris(trimethylsilyl)amine</span> Chemical compound

Tris(trimethylsilyl)amine is the simplest tris(trialkylsilyl)amine which are having the general formula (R3Si)3N, in which all three hydrogen atoms of the ammonia are replaced by trimethylsilyl groups (-Si(CH3)3). Tris(trimethylsilyl)amine has been for years in the center of scientific interest as a stable intermediate in chemical nitrogen fixation (i. e. the conversion of atmospheric nitrogen N2 into organic substrates under normal conditions).

<span class="mw-page-title-main">Tris(trimethylsilyl)phosphine</span> Chemical compound

Tris(trimethylsilyl)phosphine is the organophosphorus compound with the formula P(SiMe3)3 (Me = methyl). It is a colorless liquid that ignites in air and hydrolyses readily.

<span class="mw-page-title-main">Tris(dimethylamino)methane</span> Chemical compound

Tris(dimethylamino)methane (TDAM) is the simplest representative of the tris(dialkylamino)methanes of the general formula (R2N)3CH in which three of the four of methane's hydrogen atoms are replaced by dimethylamino groups (−N(CH3)2). Tris(dimethylamino)methane can be regarded as both an amine and an orthoamide.

<span class="mw-page-title-main">Cyclopropenium ion</span>

The cyclopropenium ion is the cation with the formula C
3
H+
3
. It has attracted attention as the smallest example of an aromatic cation. Its salts have been isolated, and many derivatives have been characterized by X-ray crystallography. The cation and some simple derivatives have been identified in the atmosphere of the Saturnian moon Titan.

<span class="mw-page-title-main">Tetrakis(trimethylsilyl)silane</span> Chemical compound

Tetrakis(trimethylsilyl)silane is the organosilicon compound with the formula (Me3Si)4Si (where Me = CH3). It is a colorless sublimable solid with a high melting point. The molecule has tetrahedral symmetry. The compound is notable as having silicon bonded to four other silicon atoms, like in elemental silicon.

<span class="mw-page-title-main">(Trimethylsilyl)methyllithium</span> Chemical compound

(Trimethylsilyl)methyllithium is classified both as an organolithium compound and an organosilicon compound. It has the empirical formula LiCH2Si(CH3)3, often abbreviated LiCH2tms. It crystallizes as the hexagonal prismatic hexamer [LiCH2tms]6, akin to some polymorphs of methyllithium. Many adducts have been characterized including the diethyl ether complexed cubane [Li43-CH2tms)4(Et2O)2] and [Li2(μ-CH2tms)2(tmeda)2].

References

  1. Sakurai H (2001). "Tris(trimethylsilyl)methane". Encyclopedia of Reagents for Organic Synthesis. doi:10.1002/047084289X.rt417. ISBN   0-471-93623-5.
  2. Sadekov ID, Zakharov AV (1999). "Stable tellurols and their metal derivatives". Russ. Chem. Rev. 68 (11): 909–923. Bibcode:1999RuCRv..68..909S. doi:10.1070/rc1999v068n11abeh000544. S2CID   250864006.
  3. Uhl W, Graupner R, Layh M, Schütz U (1995). "In4{C(SiMe3)3}4 mit In4-tetraeder und In4Se4{C(SiMe3)3}4 mit In4Se4- heterocubanstruktur". Journal of Organometallic Chemistry. 493 (1–2): C1–C5. doi:10.1016/0022-328X(95)05399-A.