Up to

Last updated
Top: In a hexagon vertex set there are 20 partitions which have one three-element subset (green) and three single-element subsets (uncolored). Bottom: Of these, there are 4 partitions up to rotation, and 3 partitions up to rotation and reflection. Partitions of 6-set with 3 singletons.svg
Top: In a hexagon vertex set there are 20 partitions which have one three-element subset (green) and three single-element subsets (uncolored). Bottom: Of these, there are 4 partitions up to rotation, and 3 partitions up to rotation and reflection.

Two mathematical objects a and b are called "equal up to an equivalence relation R"

Contents

This figure of speech is mostly used in connection with expressions derived from equality, such as uniqueness or count. For example, "x is unique up to R" means that all objects x under consideration are in the same equivalence class with respect to the relation R.

Moreover, the equivalence relation R is often designated rather implicitly by a generating condition or transformation. For example, the statement "an integer's prime factorization is unique up to ordering" is a concise way to say that any two lists of prime factors of a given integer are equivalent with respect to the relation R that relates two lists if one can be obtained by reordering (permuting) the other. [1] As another example, the statement "the solution to an indefinite integral is sin(x), up to addition of a constant" tacitly employs the equivalence relation R between functions, defined by fRg if the difference fg is a constant function, and means that the solution and the function sin(x) are equal up to this R. In the picture, "there are 4 partitions up to rotation" means that the set P has 4 equivalence classes with respect to R defined by aRb if b can be obtained from a by rotation; one representative from each class is shown in the bottom left picture part.

Equivalence relations are often used to disregard possible differences of objects, so "up to R" can be understood informally as "ignoring the same subtleties as R ignores". In the factorization example, "up to ordering" means "ignoring the particular ordering".

Further examples include "up to isomorphism", "up to permutations", and "up to rotations", which are described in the Examples section.

In informal contexts, mathematicians often use the word modulo (or simply mod) for similar purposes, as in "modulo isomorphism".

Examples

Tetris

Tetris pieces I, J, L, O, S, T, Z Tetrominoes IJLO STZ Worlds.svg
Tetris pieces I, J, L, O, S, T, Z

Consider the seven Tetris pieces (I, J, L, O, S, T, Z), known mathematically as the tetrominoes. If you consider all the possible rotations of these pieces — for example, if you consider the "I" oriented vertically to be distinct from the "I" oriented horizontally — then you find there are 19 distinct possible shapes to be displayed on the screen. (These 19 are the so-called "fixed" tetrominoes. [2] ) But if rotations are not considered distinct — so that we treat both "I vertically" and "I horizontally" indifferently as "I" — then there are only seven. We say that "there are seven tetrominoes, up to rotation". One could also say that "there are five tetrominoes, up to rotation and reflection", which accounts for the fact that L reflected gives J, and S reflected gives Z.

Eight queens

A solution of the eight queens problem Skak 8dronning.png
A solution of the eight queens problem

In the eight queens puzzle, if the queens are considered to be distinct (e.g. if they are colored with eight different colors), then there are 3709440 distinct solutions. Normally, however, the queens are considered to be interchangeable, and one usually says "there are 3,709,440 / 8! = 92 unique solutions up to permutation of the queens", or that "there are 92 solutions modulo the names of the queens", signifying that two different arrangements of the queens are considered equivalent if the queens have been permuted, as long as the set of occupied squares remains the same.

If, in addition to treating the queens as identical, rotations and reflections of the board were allowed, we would have only 12 distinct solutions "up to symmetry and the naming of the queens". For more, see Eight queens puzzle § Solutions.

Polygons

The regular n-gon, for a fixed n, is unique up to similarity. In other words, the "similarity" equivalence relation over the regular n-gons (for a fixed n) has only one equivalence class; it is impossible to produce two regular n-gons which are not similar to each other.

Group theory

In group theory, one may have a group G acting on a set X, in which case, one might say that two elements of X are equivalent "up to the group action"—if they lie in the same orbit.

Another typical example is the statement that "there are two different groups of order 4 up to isomorphism", or "modulo isomorphism, there are two groups of order 4". This means that, if one considers isomorphic groups "equivalent", there are only two equivalence classes of groups of order 4.

Nonstandard analysis

A hyperreal x and its standard part st(x) are equal up to an infinitesimal difference.

See also

Related Research Articles

<span class="mw-page-title-main">Equivalence relation</span> Mathematical concept for comparing objects

In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. A simpler example is equality. Any number a is equal to itself (reflexive). If a = b, then b = a (symmetric). If a = b and b = c, then a = c (transitive).

<span class="mw-page-title-main">Equivalence class</span> Mathematical concept

In mathematics, when the elements of some set have a notion of equivalence, then one may naturally split the set into equivalence classes. These equivalence classes are constructed so that elements and belong to the same equivalence class if, and only if, they are equivalent.

In abstract algebra, a group isomorphism is a function between two groups that sets up a one-to-one correspondence between the elements of the groups in a way that respects the given group operations. If there exists an isomorphism between two groups, then the groups are called isomorphic. From the standpoint of group theory, isomorphic groups have the same properties and need not be distinguished.

<span class="mw-page-title-main">Isomorphism</span> In mathematics, invertible homomorphism

In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word isomorphism is derived from the Ancient Greek: ἴσοςisos "equal", and μορφήmorphe "form" or "shape".

In abstract algebra, a congruence relation is an equivalence relation on an algebraic structure that is compatible with the structure in the sense that algebraic operations done with equivalent elements will yield equivalent elements. Every congruence relation has a corresponding quotient structure, whose elements are the equivalence classes for the relation.

In mathematics, equality is a relationship between two quantities or, more generally two mathematical expressions, asserting that the quantities have the same value, or that the expressions represent the same mathematical object. The equality between A and B is written A = B, and pronounced "A equals B". The symbol "=" is called an "equals sign". Two objects that are not equal are said to be distinct.

In mathematics, a presentation is one method of specifying a group. A presentation of a group G comprises a set S of generators—so that every element of the group can be written as a product of powers of some of these generators—and a set R of relations among those generators. We then say G has presentation

In number theory, the ideal class group of an algebraic number field K is the quotient group JK /PK where JK is the group of fractional ideals of the ring of integers of K, and PK is its subgroup of principal ideals. The class group is a measure of the extent to which unique factorization fails in the ring of integers of K. The order of the group, which is finite, is called the class number of K.

<span class="mw-page-title-main">Quotient ring</span> Reduction of a ring by one of its ideals

In ring theory, a branch of abstract algebra, a quotient ring, also known as factor ring, difference ring or residue class ring, is a construction quite similar to the quotient group in group theory and to the quotient space in linear algebra. It is a specific example of a quotient, as viewed from the general setting of universal algebra. Starting with a ring R and a two-sided ideal I in R, a new ring, the quotient ring R / I, is constructed, whose elements are the cosets of I in R subject to special + and operations.

<span class="mw-page-title-main">Projective space</span> Completion of the usual space with "points at infinity"

In mathematics, the concept of a projective space originated from the visual effect of perspective, where parallel lines seem to meet at infinity. A projective space may thus be viewed as the extension of a Euclidean space, or, more generally, an affine space with points at infinity, in such a way that there is one point at infinity of each direction of parallel lines.

Burnside's lemma, sometimes also called Burnside's counting theorem, the Cauchy–Frobenius lemma, the orbit-counting theorem, or the lemma that is not Burnside's, is a result in group theory that is often useful in taking account of symmetry when counting mathematical objects. Its various eponyms are based on William Burnside, George Pólya, Augustin Louis Cauchy, and Ferdinand Georg Frobenius. The result is not due to Burnside himself, who merely quotes it in his book 'On the Theory of Groups of Finite Order', attributing it instead to Frobenius (1887). Burnside's Lemma counts "orbits", which is the same thing as counting distinct objects taking account of a symmetry. Other ways of saying it are counting distinct objects up to an equivalence relation R, or counting objects that are in canonical form.

In mathematics, a quotient algebra is the result of partitioning the elements of an algebraic structure using a congruence relation. Quotient algebras are also called factor algebras. Here, the congruence relation must be an equivalence relation that is additionally compatible with all the operations of the algebra, in the formal sense described below. Its equivalence classes partition the elements of the given algebraic structure. The quotient algebra has these classes as its elements, and the compatibility conditions are used to give the classes an algebraic structure.

<span class="mw-page-title-main">Canonical form</span> Standard representation of a mathematical object

In mathematics and computer science, a canonical, normal, or standardform of a mathematical object is a standard way of presenting that object as a mathematical expression. Often, it is one which provides the simplest representation of an object and allows it to be identified in a unique way. The distinction between "canonical" and "normal" forms varies from subfield to subfield. In most fields, a canonical form specifies a unique representation for every object, while a normal form simply specifies its form, without the requirement of uniqueness.

In mathematics, localization of a category consists of adding to a category inverse morphisms for some collection of morphisms, constraining them to become isomorphisms. This is formally similar to the process of localization of a ring; it in general makes objects isomorphic that were not so before. In homotopy theory, for example, there are many examples of mappings that are invertible up to homotopy; and so large classes of homotopy equivalent spaces. Calculus of fractions is another name for working in a localized category.

In mathematics, the term modulo is often used to assert that two distinct mathematical objects can be regarded as equivalent—if their difference is accounted for by an additional factor. It was initially introduced into mathematics in the context of modular arithmetic by Carl Friedrich Gauss in 1801. Since then, the term has gained many meanings—some exact and some imprecise. For the most part, the term often occurs in statements of the form:

In mathematics, abuse of notation occurs when an author uses a mathematical notation in a way that is not entirely formally correct, but which might help simplify the exposition or suggest the correct intuition. However, since the concept of formal/syntactical correctness depends on both time and context, certain notations in mathematics that are flagged as abuse in one context could be formally correct in one or more other contexts. Time-dependent abuses of notation may occur when novel notations are introduced to a theory some time before the theory is first formalized; these may be formally corrected by solidifying and/or otherwise improving the theory. Abuse of notation should be contrasted with misuse of notation, which does not have the presentational benefits of the former and should be avoided.

In mathematics, a complete Boolean algebra is a Boolean algebra in which every subset has a supremum. Complete Boolean algebras are used to construct Boolean-valued models of set theory in the theory of forcing. Every Boolean algebra A has an essentially unique completion, which is a complete Boolean algebra containing A such that every element is the supremum of some subset of A. As a partially ordered set, this completion of A is the Dedekind–MacNeille completion.

<span class="mw-page-title-main">Mathematics of Sudoku</span> Mathematical investigation of Sudoku

Mathematics can be used to study Sudoku puzzles to answer questions such as "How many filled Sudoku grids are there?", "What is the minimal number of clues in a valid puzzle?" and "In what ways can Sudoku grids be symmetric?" through the use of combinatorics and group theory.

In mathematics, a quotient category is a category obtained from another category by identifying sets of morphisms. Formally, it is a quotient object in the category of categories, analogous to a quotient group or quotient space, but in the categorical setting.

In mathematics, equivalent definitions are used in two somewhat different ways. First, within a particular mathematical theory, a notion may have more than one definition. These definitions are equivalent in the context of a given mathematical structure. Second, a mathematical structure may have more than one definition.

References

  1. Nekovář, Jan (2011). "Mathematical English (a brief summary)" (PDF). Institut de mathématiques de Jussieu – Paris Rive Gauche. Retrieved 2019-11-21.
  2. Weisstein, Eric W. "Tetromino". MathWorld . Retrieved 2023-09-26.