Uses of radioactivity in oil and gas wells

Last updated

Radioactive sources are used for logging formation parameters. Radioactive tracers, along with the other substances in hydraulic-fracturing fluid, are sometimes used to determine the injection profile and location of fractures created by hydraulic fracturing. [1]

Contents

Use of radioactive sources for logging

Composite wireline log for the Lisburne 1 well, Alaska - the neutron and density logs used radioactive sources LI1LOG.jpg
Composite wireline log for the Lisburne 1 well, Alaska - the neutron and density logs used radioactive sources

Sealed radioactive sources are routinely used in formation evaluation of both hydraulically fractured and non-fracked wells. The sources are lowered into the borehole as part of the well logging tools, and are removed from the borehole before any hydraulic fracturing takes place. Measurement of formation density is made using a sealed caesium-137 source. This bombards the formation with high energy gamma rays. The attenuation of these gamma rays gives an accurate measure of formation density; this has been a standard oilfield tool since 1965. Another source is americium berylium (Am-Be) neutron source used in evaluation of the porosity of the formation, and this has been used since 1950. In a drilling context, these sources are used by trained personnel, and radiation exposure of those personnel is monitored. Usage is covered by licenses from International Atomic Energy Agency (IAEA) guidelines, SU or European Union protocols, and the Environment Agency in the UK. Licenses are required for access, transport, and use of radioactive sources. These sources are very large, and the potential for their use in a 'dirty bomb' means security issues are considered as important. There is no risk to the public, or to water supplies under normal usage. They are transported to a well site in shielded containers, which means exposure to the public is very low, much lower than the background radiation dose in one day.

Radiotracers and markers

The oil and gas industry in general uses unsealed radioactive solids (powder and granular forms), liquids and gases to investigate or trace the movement of materials. The most common use of these radiotracers is at the well head for the measurement of flow rate for various purposes. A 1995 study found that radioactive tracers were used in over 15% of stimulated oil and gas wells. [2]

Use of these radioactive tracers is strictly controlled. It is recommended that the radiotracer is chosen to have readily detectable radiation, appropriate chemical properties, and a half life and toxicity level that will minimize initial and residual contamination. [3] Operators are to ensure that licensed material will be used, transported, stored, and disposed of in such a way that members of the public will not receive more than 1 mSv (100 mrem) in one year, and the dose in any unrestricted area will not exceed 0.02 mSv (2 mrem) in any one hour. They are required to secure stored licensed material from access, removal, or use by unauthorized personnel and control and maintain constant surveillance of licensed material when in use and not in storage. [4] Federal and state nuclear regulatory agencies keep records of the radionuclides used. [4]

As of 2003 the isotopes Antimony-124, argon-41, cobalt-60, iodine-131, iridium-192, lanthanum-140, manganese-56, scandium-46, sodium-24, silver-110m, technetium-99m, and xenon-133 were most commonly used by the oil and gas industry because they are easily identified and measured. [3] [5] Bromine-82, Carbon-14, hydrogen-3, iodine-125 are also used. [3] [4]

Examples of amounts used are: [4]

NuclideFormActivity
Iodine-131Gas100 millicuries (3.7 GBq) total, not to exceed 20 mCi (0.74 GBq) per injection
Iodine-131Liquid50 millicuries (1.9 GBq) total, not to exceed 10 mCi (0.37 GBq) per injection
Iridium-192"Labeled" frac sand200 millicuries (7.4 GBq) total, not to exceed 15 mCi (0.56 GBq) per injection
Silver-110mLiquid200 millicuries (7.4 GBq) total, not to exceed 10 mCi (0.37 GBq) per injection

In hydraulic fracturing, plastic pellets coated with Silver-110m or sand labelled with Iridium-192with may be added to a proppant when it is required to evaluate whether a fracturing process has penetrated rocks in the pay zone. [4] Some radioactivity may by brought to the surface at the well head during testing to determine the injection profile and location of fractures. Typically this uses very small (50 kBq) Cobalt-60 sources and dilution factors are such that the activity concentrations will be very low in the topside plant and equipment. [3]

Regulation in the US

The NRC and approved state agencies regulate the use of injected radionuclides in hydraulic fracturing in the United States. [4]

The US EPA sets radioactivity standards for drinking water. [6] Federal and state regulators do not require sewage treatment plants that accept gas well wastewater to test for radioactivity. In Pennsylvania, where the hydraulic fracturing drilling boom began in 2008, most drinking-water intake plants downstream from those sewage treatment plants have not tested for radioactivity since before 2006. [7] The EPA has asked the Pennsylvania Department of Environmental Protection to require community water systems in certain locations, and centralized wastewater treatment facilities to conduct testing for radionuclides. [7] [8] [9]

See also

Related Research Articles

A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess nuclear energy, making it unstable. This excess energy can be used in one of three ways: emitted from the nucleus as gamma radiation; transferred to one of its electrons to release it as a conversion electron; or used to create and emit a new particle (alpha particle or beta particle) from the nucleus. During those processes, the radionuclide is said to undergo radioactive decay. These emissions are considered ionizing radiation because they are energetic enough to liberate an electron from another atom. The radioactive decay can produce a stable nuclide or will sometimes produce a new unstable radionuclide which may undergo further decay. Radioactive decay is a random process at the level of single atoms: it is impossible to predict when one particular atom will decay. However, for a collection of atoms of a single nuclide the decay rate, and thus the half-life (t1/2) for that collection, can be calculated from their measured decay constants. The range of the half-lives of radioactive atoms has no known limits and spans a time range of over 55 orders of magnitude.

<span class="mw-page-title-main">Radioactive waste</span> Unusable radioactive materials

Radioactive waste is a type of hazardous waste that contains radioactive material. Radioactive waste is a result of many activities, including nuclear medicine, nuclear research, nuclear power generation, nuclear decommissioning, rare-earth mining, and nuclear weapons reprocessing. The storage and disposal of radioactive waste is regulated by government agencies in order to protect human health and the environment.

<span class="mw-page-title-main">Beta particle</span> Ionizing radiation

A beta particle, also called beta ray or beta radiation, is a high-energy, high-speed electron or positron emitted by the radioactive decay of an atomic nucleus during the process of beta decay. There are two forms of beta decay, β decay and β+ decay, which produce electrons and positrons respectively.

Ionizing radiation, including nuclear radiation, consists of subatomic particles or electromagnetic waves that have sufficient energy to ionize atoms or molecules by detaching electrons from them. Some particles can travel up to 99% of the speed of light, and the electromagnetic waves are on the high-energy portion of the electromagnetic spectrum.

<span class="mw-page-title-main">Nuclear medicine</span> Medical specialty

Nuclear medicine or nucleology is a medical specialty involving the application of radioactive substances in the diagnosis and treatment of disease. Nuclear imaging, in a sense, is "radiology done inside out" because it records radiation emitting from within the body rather than radiation that is generated by external sources like X-rays. In addition, nuclear medicine scans differ from radiology, as the emphasis is not on imaging anatomy, but on the function. For such reason, it is called a physiological imaging modality. Single photon emission computed tomography (SPECT) and positron emission tomography (PET) scans are the two most common imaging modalities in nuclear medicine.

<span class="mw-page-title-main">Neutron radiation</span> Ionizing radiation that presents as free neutrons

Neutron radiation is a form of ionizing radiation that presents as free neutrons. Typical phenomena are nuclear fission or nuclear fusion causing the release of free neutrons, which then react with nuclei of other atoms to form new nuclides—which, in turn, may trigger further neutron radiation. Free neutrons are unstable, decaying into a proton, an electron, plus an electron antineutrino. Free neutrons have a mean lifetime of 887 seconds.

A radioactive tracer, radiotracer, or radioactive label is a chemical compound in which one or more atoms have been replaced by a radionuclide so by virtue of its radioactive decay it can be used to explore the mechanism of chemical reactions by tracing the path that the radioisotope follows from reactants to products. Radiolabeling or radiotracing is thus the radioactive form of isotopic labeling. In biological contexts, use of radioisotope tracers are sometimes called radioisotope feeding experiments.

<span class="mw-page-title-main">Radioactive contamination</span> Undesirable radioactive elements on surfaces or in gases, liquids, or solids

Radioactive contamination, also called radiological pollution, is the deposition of, or presence of radioactive substances on surfaces or within solids, liquids, or gases, where their presence is unintended or undesirable.

<span class="mw-page-title-main">Nuclear fission product</span> Atoms or particles produced by nuclear fission

Nuclear fission products are the atomic fragments left after a large atomic nucleus undergoes nuclear fission. Typically, a large nucleus like that of uranium fissions by splitting into two smaller nuclei, along with a few neutrons, the release of heat energy, and gamma rays. The two smaller nuclei are the fission products..

<span class="mw-page-title-main">Iodine-131</span> Isotope of iodine

Iodine-131 is an important radioisotope of iodine discovered by Glenn Seaborg and John Livingood in 1938 at the University of California, Berkeley. It has a radioactive decay half-life of about eight days. It is associated with nuclear energy, medical diagnostic and treatment procedures, and natural gas production. It also plays a major role as a radioactive isotope present in nuclear fission products, and was a significant contributor to the health hazards from open-air atomic bomb testing in the 1950s, and from the Chernobyl disaster, as well as being a large fraction of the contamination hazard in the first weeks in the Fukushima nuclear crisis. This is because 131I is a major fission product of uranium and plutonium, comprising nearly 3% of the total products of fission. See fission product yield for a comparison with other radioactive fission products. 131I is also a major fission product of uranium-233, produced from thorium.

<span class="mw-page-title-main">Radiochemistry</span>

Radiochemistry is the chemistry of radioactive materials, where radioactive isotopes of elements are used to study the properties and chemical reactions of non-radioactive isotopes. Much of radiochemistry deals with the use of radioactivity to study ordinary chemical reactions. This is very different from radiation chemistry where the radiation levels are kept too low to influence the chemistry.

<span class="mw-page-title-main">Isotopes of iodine</span> Nuclides with atomic number of 53 but with different mass numbers

There are 37 known isotopes of iodine (53I) from 108I to 144I; all undergo radioactive decay except 127I, which is stable. Iodine is thus a monoisotopic element.

<span class="mw-page-title-main">Radioactivity in the life sciences</span>

Radioactivity is generally used in life sciences for highly sensitive and direct measurements of biological phenomena, and for visualizing the location of biomolecules radiolabelled with a radioisotope.

Naturally occurring radioactive materials (NORM) and technologically enhanced naturally occurring radioactive materials (TENORM) consist of materials, usually industrial wastes or by-products enriched with radioactive elements found in the environment, such as uranium, thorium and potassium and any of their decay products, such as radium and radon. Produced water discharges and spills are a good example of entering NORMs into the surrounding environment.

<span class="mw-page-title-main">Fracking</span> Fracturing bedrock by pressurized liquid

Fracking is a well stimulation technique involving the fracturing of formations in bedrock by a pressurized liquid. The process involves the high-pressure injection of "fracking fluid" into a wellbore to create cracks in the deep-rock formations through which natural gas, petroleum, and brine will flow more freely. When the hydraulic pressure is removed from the well, small grains of hydraulic fracturing proppants hold the fractures open.

<span class="mw-page-title-main">Fracking proppants</span> Fracking materials

A proppant is a solid material, typically sand, treated sand or man-made ceramic materials, designed to keep an induced hydraulic fracture open, during or following a fracturing treatment, most commonly for unconventional reservoirs. It is added to a fracking fluid which may vary in composition depending on the type of fracturing used, and can be gel, foam or slickwater–based. In addition, there may be unconventional fracking fluids. Fluids make tradeoffs in such material properties as viscosity, where more viscous fluids can carry more concentrated proppant; the energy or pressure demands to maintain a certain flux pump rate that will conduct the proppant appropriately; pH, various rheological factors, among others. In addition, fluids may be used in low-volume well stimulation of high-permeability sandstone wells to the high-volume operations such as shale gas and tight gas that use millions of gallons of water per well.

<span class="mw-page-title-main">Environmental impact of fracking in the United States</span>

Environmental impact of fracking in the United States has been an issue of public concern, and includes the contamination of ground and surface water, methane emissions, air pollution, migration of gases and fracking chemicals and radionuclides to the surface, the potential mishandling of solid waste, drill cuttings, increased seismicity and associated effects on human and ecosystem health. Research has determined that human health is affected. A number of instances with groundwater contamination have been documented due to well casing failures and illegal disposal practices, including confirmation of chemical, physical, and psychosocial hazards such as pregnancy and birth outcomes, migraine headaches, chronic rhinosinusitis, severe fatigue, asthma exacerbations, and psychological stress. While opponents of water safety regulation claim fracking has never caused any drinking water contamination, adherence to regulation and safety procedures is required to avoid further negative impacts.

<span class="mw-page-title-main">Environmental impact of fracking</span>

The environmental impact of fracking is related to land use and water consumption, air emissions, including methane emissions, brine and fracturing fluid leakage, water contamination, noise pollution, and health. Water and air pollution are the biggest risks to human health from fracking. Research has determined that fracking negatively affects human health and drives climate change.

Hydraulic fracturing is the propagation of fractures in a rock layer by pressurized fluid. Induced hydraulic fracturing or hydrofracking, commonly known as fracking, is a technique used to release petroleum, natural gas, or other substances for extraction, particularly from unconventional reservoirs. Radionuclides are associated with fracking in two main ways. Injection of man-made radioactive tracers, along with the other substances in hydraulic-fracturing fluid, is often used to determine the injection profile and location of fractures created by fracking. In addition, fracking releases naturally occurring heavy metals and radioactive materials from shale deposits, and these substances return to the surface with flowback, also referred to as wastewater.

<span class="mw-page-title-main">Radioactive source</span>

A radioactive source is a known quantity of a radionuclide which emits ionizing radiation, typically one or more of the radiation types gamma rays, alpha particles, beta particles, and neutron radiation.

References

  1. Reis, John C. (1976). Environmental Control in Petroleum Engineering. Gulf Professional Publishers.
  2. K. Fisher and others, "A comprehensive study of the analysis and economic benefits of radioactive tracer engineered stimulation procedures," Society of Petroleum Engineers, Paper 30794-MS, October 1995.
  3. 1 2 3 4 Radiation Protection and the Management of Radioactive Waste in the Oil and Gas Industry (PDF) (Report). International Atomic Energy Agency. 2003. pp. 38–40. Retrieved 20 May 2012. Beta emitters, including 3H and 14C, may be used when it is feasible to use sampling techniques to detect the presence of the radiotracer, or when changes in activity concentration can be used as indicators of the properties of interest in the system. Gamma emitters, such as 46Sc, 140La, 56Mn, 24Na, 124Sb, 192Ir, 99Tcm, 131I, 110Agm, 41Ar and 133Xe are used extensively because of the ease with which they can be identified and measured. ... In order to aid the detection of any spillage of solutions of the 'soft' beta emitters, they are sometimes spiked with a short half-life gamma emitter such as 82Br...
  4. 1 2 3 4 5 6 Jack E. Whitten, Steven R. Courtemanche, Andrea R. Jones, Richard E. Penrod, and David B. Fogl (Division of Industrial and Medical Nuclear Safety, Office of Nuclear Material Safety and Safeguards) (June 2000). "Consolidated Guidance About Materials Licenses: Program-Specific Guidance About Well Logging, Tracer, and Field Flood Study Licenses (NUREG-1556, Volume 14)". US Nuclear Regulatory Commission. Retrieved 19 April 2012. labeled Frac Sand...Sc-46, Br-82, Ag-110m, Sb-124, Ir-192{{cite web}}: CS1 maint: multiple names: authors list (link)
  5. Dina Murphy & Larry Huskins (8 Sep 2006). "letter filed with Department of Environment, New Brunswick, CA" (PDF). Penobsquis, CA government: 3. Retrieved 29 July 2012. engineer who works with this radioactive material for a living is exposed to less radiation than an individual who smokes 1.5 packs of cigarettes a day."{{cite journal}}: Cite journal requires |journal= (help)
  6. US EPA, are EPA's drinking water regulations for radionuclides? What are EPA's drinking water regulations for radionuclides?, accessed 15 Sept. 2013.
  7. 1 2 Urbina, Ian (26 February 2011). "Regulation Lax as Gas Wells' Tainted Water Hits Rivers". The New York Times. Retrieved 22 February 2012. The level of radioactivity in the wastewater has sometimes been hundreds or even thousands of times the maximum allowed by the federal standard for drinking water.
  8. Shawn M. Garvin (7 March 2011). "Letter to PADEP re:Marcellus Shale 030711" (PDF). EPA . Retrieved 11 May 2012. ...several sources of data, including reports required by PADEP, indicate that the wastewater resulting from gas drilling operations (including flowback from hydraulic fracturing and other fluids produced from gas production wells) contains variable and sometimes high concentrations of materials that may present a threat to human health and aquatic environment, including radionuclides....Many of these substances are not completely removed by wastewater treatment facilities, and their discharge may cause or contribute to impaired drinking water quality for downstream users, or harm aquatic life...At the same time, it is equally critical to examine the persistence of these substances, including radionuclides, in wastewater effluents and their potential presence in receiving waters.{{cite journal}}: Cite journal requires |journal= (help)
  9. Ian Urbina (7 March 2011). "E.P.A. Steps Up Scrutiny of Pollution in Pennsylvania Rivers". The New York Times. Retrieved 23 February 2012.