Voxtalisib

Last updated
Voxtalisib
Voxtalisib structure.png
Identifiers
  • 2-amino-8-ethyl-4-methyl-6-(1H-pyrazol-5-yl)pyrido[2,3-d]pyrimidin-7-one
CAS Number
PubChem CID
DrugBank
ChemSpider
UNII
ChEBI
ChEMBL
Chemical and physical data
Formula C13H14N6O
Molar mass 270.296 g·mol−1
3D model (JSmol)
  • CCN1C2=NC(=NC(=C2C=C(C1=O)C3=CC=NN3)C)N
  • InChI=1S/C13H14N6O/c1-3-19-11-8(7(2)16-13(14)17-11)6-9(12(19)20)10-4-5-15-18-10/h4-6H,3H2,1-2H3,(H,15,18)(H2,14,16,17)
  • Key:RGHYDLZMTYDBDT-UHFFFAOYSA-N

Voxtalisib (XL-765, SAR245409) is a drug which acts as a dual inhibitor of the kinase enzymes phosphatidylinositol 3-kinase (PI3K) and mechanistic target of rapamycin (mTOR). It is in clinical trials for the treatment of various types of cancer. [1] [2] [3] [4] [5]

Related Research Articles

<span class="mw-page-title-main">Sirolimus</span> Pharmaceutical drug

Sirolimus, also known as rapamycin and sold under the brand name Rapamune among others, is a macrolide compound that is used to coat coronary stents, prevent organ transplant rejection, treat a rare lung disease called lymphangioleiomyomatosis, and treat perivascular epithelioid cell tumor (PEComa). It has immunosuppressant functions in humans and is especially useful in preventing the rejection of kidney transplants. It is a mechanistic target of rapamycin kinase (mTOR) inhibitor that inhibits activation of T cells and B cells by reducing their sensitivity to interleukin-2 (IL-2).

<span class="mw-page-title-main">Protein kinase B</span> Set of three serine/threonine-specific protein kinases

Protein kinase B (PKB), also known as Akt, is the collective name of a set of three serine/threonine-specific protein kinases that play key roles in multiple cellular processes such as glucose metabolism, apoptosis, cell proliferation, transcription, and cell migration.

mTOR Mammalian protein found in Homo sapiens

The mammalian target of rapamycin (mTOR), also referred to as the mechanistic target of rapamycin, and sometimes called FK506-binding protein 12-rapamycin-associated protein 1 (FRAP1), is a kinase that in humans is encoded by the MTOR gene. mTOR is a member of the phosphatidylinositol 3-kinase-related kinase family of protein kinases.

<span class="mw-page-title-main">Targeted therapy</span> Type of therapy

Targeted therapy or molecularly targeted therapy is one of the major modalities of medical treatment (pharmacotherapy) for cancer, others being hormonal therapy and cytotoxic chemotherapy. As a form of molecular medicine, targeted therapy blocks the growth of cancer cells by interfering with specific targeted molecules needed for carcinogenesis and tumor growth, rather than by simply interfering with all rapidly dividing cells. Because most agents for targeted therapy are biopharmaceuticals, the term biologic therapy is sometimes synonymous with targeted therapy when used in the context of cancer therapy. However, the modalities can be combined; antibody-drug conjugates combine biologic and cytotoxic mechanisms into one targeted therapy.

<span class="mw-page-title-main">Phosphoinositide 3-kinase</span> Class of enzymes

Phosphoinositide 3-kinases (PI3Ks), also called phosphatidylinositol 3-kinases, are a family of enzymes involved in cellular functions such as cell growth, proliferation, differentiation, motility, survival and intracellular trafficking, which in turn are involved in cancer.

<span class="mw-page-title-main">Temsirolimus</span>

Temsirolimus, sold under the brand name Torisel, is an intravenous drug for the treatment of renal cell carcinoma (RCC), developed by Wyeth Pharmaceuticals and approved by the U.S. Food and Drug Administration (FDA) in May 2007, and was also approved by the European Medicines Agency (EMA) in November 2007. It is a derivative and prodrug of sirolimus.

<span class="mw-page-title-main">P70-S6 Kinase 1</span> Protein-coding gene in the species Homo sapiens

Ribosomal protein S6 kinase beta-1 (S6K1), also known as p70S6 kinase, is an enzyme that in humans is encoded by the RPS6KB1 gene. It is a serine/threonine kinase that acts downstream of PIP3 and phosphoinositide-dependent kinase-1 in the PI3 kinase pathway. As the name suggests, its target substrate is the S6 ribosomal protein. Phosphorylation of S6 induces protein synthesis at the ribosome.

<span class="mw-page-title-main">Anaplastic lymphoma kinase</span> Protein-coding gene in the species Homo sapiens

Anaplastic lymphoma kinase (ALK) also known as ALK tyrosine kinase receptor or CD246 is an enzyme that in humans is encoded by the ALK gene.

<span class="mw-page-title-main">Phosphoinositide 3-kinase inhibitor</span>

Phosphoinositide 3-kinase inhibitors are a class of medical drugs that are mainly used to treat advanced cancers. They function by inhibiting one or more of the phosphoinositide 3-kinase (PI3K) enzymes, which are part of the PI3K/AKT/mTOR pathway. This signal pathway regulates cellular functions such as growth and survival. It is strictly regulated in healthy cells, but is always active in many cancer cells, allowing the cancer cells to better survive and multiply. PI3K inhibitors block the PI3K/AKT/mTOR pathway and thus slow down cancer growth. They are examples of a targeted therapy. While PI3K inhibitors are an effective treatment, they can have very severe side effects and are therefore only used if other treatments have failed or are not suitable.

<span class="mw-page-title-main">PI3K/AKT/mTOR pathway</span> Cell cycle regulation pathway

The PI3K/AKT/mTOR pathway is an intracellular signaling pathway important in regulating the cell cycle. Therefore, it is directly related to cellular quiescence, proliferation, cancer, and longevity. PI3K activation phosphorylates and activates AKT, localizing it in the plasma membrane. AKT can have a number of downstream effects such as activating CREB, inhibiting p27, localizing FOXO in the cytoplasm, activating PtdIns-3ps, and activating mTOR which can affect transcription of p70 or 4EBP1. There are many known factors that enhance the PI3K/AKT pathway including EGF, shh, IGF-1, insulin, and CaM. Both leptin and insulin recruit PI3K signalling for metabolic regulation. The pathway is antagonized by various factors including PTEN, GSK3B, and HB9.

<span class="mw-page-title-main">Crizotinib</span> ALK inhibitor for treatment of non-small-cell lung cancer

Crizotinib, sold under the brand name Xalkori among others, is an anti-cancer medication used for the treatment of non-small cell lung carcinoma (NSCLC). It acts as an ALK and ROS1 inhibitor.

<span class="mw-page-title-main">Dactolisib</span> Chemical compound

Dactolisib is an imidazoquinoline derivative acting as a PI3K inhibitor. It also inhibits mTOR. It is being investigated as a possible cancer treatment.

mTOR inhibitors Class of pharmaceutical drugs

mTOR inhibitors are a class of drugs that inhibit the mechanistic target of rapamycin (mTOR), which is a serine/threonine-specific protein kinase that belongs to the family of phosphatidylinositol-3 kinase (PI3K) related kinases (PIKKs). mTOR regulates cellular metabolism, growth, and proliferation by forming and signaling through two protein complexes, mTORC1 and mTORC2. The most established mTOR inhibitors are so-called rapalogs, which have shown tumor responses in clinical trials against various tumor types.

A MEK inhibitor is a chemical or drug that inhibits the mitogen-activated protein kinase kinase enzymes MEK1 and/or MEK2. They can be used to affect the MAPK/ERK pathway which is often overactive in some cancers.

mTORC1 Protein complex

mTORC1, also known as mammalian target of rapamycin complex 1 or mechanistic target of rapamycin complex 1, is a protein complex that functions as a nutrient/energy/redox sensor and controls protein synthesis.

mTOR Complex 2 (mTORC2) is an acutely rapamycin-insensitive protein complex formed by serine/threonine kinase mTOR that regulates cell proliferation and survival, cell migration and cytoskeletal remodeling. The complex itself is rather large, consisting of seven protein subunits. The catalytic mTOR subunit, DEP domain containing mTOR-interacting protein (DEPTOR), mammalian lethal with sec-13 protein 8, and TTI1/TEL2 complex are shared by both mTORC2 and mTORC1. Rapamycin-insensitive companion of mTOR (RICTOR), mammalian stress-activated protein kinase interacting protein 1 (mSIN1), and protein observed with rictor 1 and 2 (Protor1/2) can only be found in mTORC2. Rictor has been shown to be the scaffold protein for substrate binding to mTORC2.

<span class="mw-page-title-main">Sapanisertib</span>

Sapanisertib is an experimental small molecule inhibitor of mTOR which is administered orally. It targets both mTORC1 and mTORC2.

<span class="mw-page-title-main">WYE-687</span>

WYE-687 is a drug which acts as an inhibitor of both subtypes of the mechanistic target of rapamycin (mTOR), mTORC1 and mTORC2. It is being researched for potential applications in the treatment of various forms of cancer.

<span class="mw-page-title-main">XL-388</span> Chemical compound

XL-388 is a drug which acts as a potent and selective inhibitor of both subtypes of the mechanistic target of rapamycin (mTOR), mTORC1 and mTORC2. It is being researched for the treatment of various forms of cancer, and has also been used to demonstrate a potential application for mTOR inhibitors in the treatment of neuropathic pain.

<span class="mw-page-title-main">Torin-1</span>

Torin-1 is a drug which was one of the first non-rapalog derived inhibitors of the mechanistic target of rapamycin (mTOR) subtypes mTORC1 and mTORC2. In animal studies it has anti-inflammatory, anti-cancer, and anti-aging properties, and shows activity against neuropathic pain.

References

  1. Prasad G, Sottero T, Yang X, Mueller S, James CD, Weiss WA, et al. (April 2011). "Inhibition of PI3K/mTOR pathways in glioblastoma and implications for combination therapy with temozolomide". Neuro-Oncology. 13 (4): 384–92. doi:10.1093/neuonc/noq193. PMC   3064692 . PMID   21317208.
  2. Gravina GL, Mancini A, Scarsella L, Colapietro A, Jitariuc A, Vitale F, et al. (January 2016). "Dual PI3K/mTOR inhibitor, XL765 (SAR245409), shows superior effects to sole PI3K [XL147 (SAR245408)] or mTOR [rapamycin] inhibition in prostate cancer cell models". Tumour Biology. 37 (1): 341–51. doi:10.1007/s13277-015-3725-3. PMID   26219891. S2CID   23993969.
  3. Brown JR, Hamadani M, Hayslip J, Janssens A, Wagner-Johnston N, Ottmann O, et al. (April 2018). "Voxtalisib (XL765) in patients with relapsed or refractory non-Hodgkin lymphoma or chronic lymphocytic leukaemia: an open-label, phase 2 trial". The Lancet. Haematology. 5 (4): e170–e180. doi:10.1016/S2352-3026(18)30030-9. PMC   7029813 . PMID   29550382.
  4. Rehan M (2019). "Anticancer compound XL765 as PI3K/mTOR dual inhibitor: A structural insight into the inhibitory mechanism using computational approaches". PLOS ONE. 14 (6): e0219180. Bibcode:2019PLoSO..1419180R. doi: 10.1371/journal.pone.0219180 . PMC   6597235 . PMID   31247018.
  5. Tarantelli C, Lupia A, Stathis A, Bertoni F (February 2020). "Is There a Role for Dual PI3K/mTOR Inhibitors for Patients Affected with Lymphoma?". International Journal of Molecular Sciences. 21 (3): 1060. doi: 10.3390/ijms21031060 . PMC   7037719 . PMID   32033478.