Water-reactive substances

Last updated

Water-reactive substances [1] are those that spontaneously undergo a chemical reaction with water, as they are highly reducing in nature. [2] Notable examples include alkali metals, lithium through caesium, and alkaline earth metals, magnesium through barium.

Contents

Some water-reactive substances are also pyrophoric, like organometallics and sulfuric acid, and should be kept away from moisture. The use of acid-resistant gloves and face shield are required and should be handled in fume hoods. [3]

Such substances are classified as R2 under the UN classification system and as Hazard 4.3 by the United States Department of Transportation. In an NFPA 704 fire diamond's white square, they are denoted as "W̶".

All chemicals that react vigorously with water or liberate toxic gas when in contact with water are recognized for their hazardous nature in the 'Approved Supply List,' [4] or the list of substances covered by the international legislation on major hazards [5] many of which are commonly used in manufacturing processes.

Alkali metals

Group 1: Alkali metals Periodieksysteemmaardaneffeietsanders-kolom1.svg
Group 1: Alkali metals
Reaction of sodium (Na) and water
Reaction of potassium (K) in water

The alkali metals (Li, Na, K, Rb, Cs, and Fr) are the most reactive metals in the periodic table - they all react vigorously or even explosively with cold water, resulting in the displacement of hydrogen.

The Group 1 metal (M) is oxidised to its metal ions, and water is reduced to hydrogen gas (H2) and hydroxide ion (OH), giving a general equation of:

2 M(s) + 2 H2O(l) ⟶ 2 M+(aq) + 2 OH(aq) + H2(g) [6]

The Group 1 metals or alkali metals become more reactive as their number of energy levels inceases.

Alkaline earth metals

Group 2: Alkaline earth metals Periodieksysteemmaardaneffeietsanders-kolom2.svg
Group 2: Alkaline earth metals

The alkaline earth metals (Be, Mg, Ca, Sr, Ba, and Ra) are the second most reactive metals in the periodic table, and, like the Group 1 metals, have increasing reactivity with increasing numbers of energy levels. Beryllium (Be) is the only alkaline earth metal that does not react with water or steam, even if the metal is heated red hot. [7] Additionally, beryllium has a resistant outer oxide layer that lowers its reactivity at lower temperatures.

Magnesium shows insignificant reaction with water, but burns vigorously with steam or water vapor to produce white magnesium oxide and hydrogen gas: [8]

Mg(s) + H2O(g) ⟶ MgO(s) + H2(g)


Magnesium has a mild reaction with cold water. The reaction is short-lived because the magnesium hydroxide layer formed on the magnesium is almost insoluble in water and prevents further reaction.

Mg(s) + 2H2O(l) ⟶ Mg(OH)2(s) + H2(g) [9]

A metal reacting with cold water will produce a metal hydroxide and hydrogen gas. However, if a metal reacts with steam, like magnesium, metal oxide is produced as a result of metal hydroxides splitting upon heating. [10]

The hydroxides of calcium, strontium and barium are only slightly water-soluble but produce sufficient hydroxide ions to make the environment basic, giving a general equation of:

M(s) + 2 H2O(l) ⟶ M(OH)2(aq) + H2(g) [11]

Radium reacts similarly to the rest of the alkaline earth metals (other than magnesium), forming radium hydroxide and hydrogen gas. [12] Notably, radium hydroxide is the most soluble out of all alkaline earth hydroxide species. [13]

Reactivity series of metals

Order of reactivityMetalReactions with water or steam
Most reactivepotassium (K)Very vigorous reaction with cold water
Second most reactivesodium (Na)Vigorous reaction with cold water
Third most reactivecalcium (Ca)Less vigorous reaction with cold water
Least reactivemagnesium (Mg)Slow reaction with cold water, vigorous with hot water

Hydrogen is always produced when a metal reacts with cold water or steam. [14]

Halogens

Halogens are so named due to their potential to form salts, and form many simple strong acids with hydrogen. Out of the four stable halogens, only fluorine and chlorine have reduction potentials higher than that of oxygen, allowing them to form hydrofluoric acid and hydrochloric acid directly through reaction with water. [15] The reaction of fluorine with water is especially hazardous, as an addition of fluorine gas to cold water will produce hydrofluoric acid, oxygen gas, and ozone. [16] However, the reaction is fairly slow. [17]

Related Research Articles

<span class="mw-page-title-main">Chlorine</span> Chemical element, symbol Cl and atomic number 17

Chlorine is a chemical element; it has symbol Cl and atomic number 17. The second-lightest of the halogens, it appears between fluorine and bromine in the periodic table and its properties are mostly intermediate between them. Chlorine is a yellow-green gas at room temperature. It is an extremely reactive element and a strong oxidising agent: among the elements, it has the highest electron affinity and the third-highest electronegativity on the revised Pauling scale, behind only oxygen and fluorine.

<span class="mw-page-title-main">Halogen</span> Group of chemical elements

The halogens are a group in the periodic table consisting of six chemically related elements: fluorine (F), chlorine (Cl), bromine (Br), iodine (I), and the radioactive elements astatine (At) and tennessine (Ts), though some authors would exclude tennessine as its chemistry is unknown and is theoretically expected to be more like that of gallium. In the modern IUPAC nomenclature, this group is known as group 17.

<span class="mw-page-title-main">Hydroxide</span> Chemical compound

Hydroxide is a diatomic anion with chemical formula OH. It consists of an oxygen and hydrogen atom held together by a single covalent bond, and carries a negative electric charge. It is an important but usually minor constituent of water. It functions as a base, a ligand, a nucleophile, and a catalyst. The hydroxide ion forms salts, some of which dissociate in aqueous solution, liberating solvated hydroxide ions. Sodium hydroxide is a multi-million-ton per annum commodity chemical. The corresponding electrically neutral compound HO is the hydroxyl radical. The corresponding covalently bound group –OH of atoms is the hydroxy group. Both the hydroxide ion and hydroxy group are nucleophiles and can act as catalysts in organic chemistry.

<span class="mw-page-title-main">Magnesium</span> Chemical element, symbol Mg and atomic number 12

Magnesium is a chemical element; it has symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals it occurs naturally only in combination with other elements and it almost always has an oxidation state of +2. It reacts readily with air to form a thin passivation coating of magnesium oxide that inhibits further corrosion of the metal. The free metal burns with a brilliant-white light. The metal is obtained mainly by electrolysis of magnesium salts obtained from brine. It is less dense than aluminium and is used primarily as a component in strong and lightweight alloys that contain aluminium.

<span class="mw-page-title-main">Alkaline earth metal</span> Group of chemical elements

The alkaline earth metals are six chemical elements in group 2 of the periodic table. They are beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), and radium (Ra). The elements have very similar properties: they are all shiny, silvery-white, somewhat reactive metals at standard temperature and pressure.

<span class="mw-page-title-main">Electrolysis</span> Technique in chemistry and manufacturing

In chemistry and manufacturing, electrolysis is a technique that uses direct electric current (DC) to drive an otherwise non-spontaneous chemical reaction. Electrolysis is commercially important as a stage in the separation of elements from naturally occurring sources such as ores using an electrolytic cell. The voltage that is needed for electrolysis to occur is called the decomposition potential. The word "lysis" means to separate or break, so in terms, electrolysis would mean "breakdown via electricity."

<span class="mw-page-title-main">Haloalkane</span> Group of chemical compounds derived from alkanes containing one or more halogens

The haloalkanes are alkanes containing one or more halogen substituents. They are a subset of the general class of halocarbons, although the distinction is not often made. Haloalkanes are widely used commercially. They are used as flame retardants, fire extinguishants, refrigerants, propellants, solvents, and pharmaceuticals. Subsequent to the widespread use in commerce, many halocarbons have also been shown to be serious pollutants and toxins. For example, the chlorofluorocarbons have been shown to lead to ozone depletion. Methyl bromide is a controversial fumigant. Only haloalkanes that contain chlorine, bromine, and iodine are a threat to the ozone layer, but fluorinated volatile haloalkanes in theory may have activity as greenhouse gases. Methyl iodide, a naturally occurring substance, however, does not have ozone-depleting properties and the United States Environmental Protection Agency has designated the compound a non-ozone layer depleter. For more information, see Halomethane. Haloalkane or alkyl halides are the compounds which have the general formula "RX" where R is an alkyl or substituted alkyl group and X is a halogen.

<span class="mw-page-title-main">Period (periodic table)</span> Method of visualizing the relationship between elements

A period on the periodic table is a row of chemical elements. All elements in a row have the same number of electron shells. Each next element in a period has one more proton and is less metallic than its predecessor. Arranged this way, elements in the same group (column) have similar chemical and physical properties, reflecting the periodic law. For example, the halogens lie in the second-to-last group and share similar properties, such as high reactivity and the tendency to gain one electron to arrive at a noble-gas electronic configuration. As of 2022, a total of 118 elements have been discovered and confirmed.

<span class="mw-page-title-main">Base (chemistry)</span> Type of chemical substance

In chemistry, there are three definitions in common use of the word "base": Arrhenius bases, Brønsted bases, and Lewis bases. All definitions agree that bases are substances that react with acids, as originally proposed by G.-F. Rouelle in the mid-18th century.

A period 2 element is one of the chemical elements in the second row of the periodic table of the chemical elements. The periodic table is laid out in rows to illustrate recurring (periodic) trends in the chemical behavior of the elements as their atomic number increases; a new row is started when chemical behavior begins to repeat, creating columns of elements with similar properties.

In chemistry, a reactivity series (or reactivity series of elements) is an empirical, calculated, and structurally analytical progression of a series of metals, arranged by their "reactivity" from highest to lowest. It is used to summarize information about the reactions of metals with acids and water, single displacement reactions and the extraction of metals from their ores.

In chemistry, an interhalogen compound is a molecule which contains two or more different halogen atoms and no atoms of elements from any other group.

<span class="mw-page-title-main">Single displacement reaction</span> Type of chemical reaction

A single-displacement reaction, also known as single replacement reaction or exchange reaction, is an archaic concept in chemistry. It describes the stoichiometry of some chemical reactions in which one element or ligand is replaced by atom or group.

Basic oxides are oxides that show basic properties, in opposition to acidic oxides. A basic oxide can either react with water to form a base, or with an acid to form a salt and water in a neutralization reaction.

The chemical element nitrogen is one of the most abundant elements in the universe and can form many compounds. It can take several oxidation states; but the most common oxidation states are -3 and +3. Nitrogen can form nitride and nitrate ions. It also forms a part of nitric acid and nitrate salts. Nitrogen compounds also have an important role in organic chemistry, as nitrogen is part of proteins, amino acids and adenosine triphosphate.

Bromine compounds are compounds containing the element bromine (Br). These compounds usually form the -1, +1, +3 and +5 oxidation states. Bromine is intermediate in reactivity between chlorine and iodine, and is one of the most reactive elements. Bond energies to bromine tend to be lower than those to chlorine but higher than those to iodine, and bromine is a weaker oxidising agent than chlorine but a stronger one than iodine. This can be seen from the standard electrode potentials of the X2/X couples (F, +2.866 V; Cl, +1.395 V; Br, +1.087 V; I, +0.615 V; At, approximately +0.3 V). Bromination often leads to higher oxidation states than iodination but lower or equal oxidation states to chlorination. Bromine tends to react with compounds including M–M, M–H, or M–C bonds to form M–Br bonds.

Magnesium compounds are compounds formed by the element magnesium (Mg). These compounds are important to industry and biology, including magnesium carbonate, magnesium chloride, magnesium citrate, magnesium hydroxide, magnesium oxide, magnesium sulfate, and magnesium sulfate heptahydrate.

<span class="mw-page-title-main">Magnesium acetate</span> Chemical compound

Anhydrous magnesium acetate has the chemical formula Mg(C2H3O2)2 and in its hydrated form, magnesium acetate tetrahydrate, it has the chemical formula Mg(CH3COO)2 • 4H2O. In this compound magnesium has an oxidation state of 2+. Magnesium acetate is the magnesium salt of acetic acid. It is deliquescent and upon heating, it decomposes to form magnesium oxide. Magnesium acetate is commonly used as a source of magnesium in biological reactions.

Fluorine forms a great variety of chemical compounds, within which it always adopts an oxidation state of −1. With other atoms, fluorine forms either polar covalent bonds or ionic bonds. Most frequently, covalent bonds involving fluorine atoms are single bonds, although at least two examples of a higher order bond exist. Fluoride may act as a bridging ligand between two metals in some complex molecules. Molecules containing fluorine may also exhibit hydrogen bonding. Fluorine's chemistry includes inorganic compounds formed with hydrogen, metals, nonmetals, and even noble gases; as well as a diverse set of organic compounds. For many elements the highest known oxidation state can be achieved in a fluoride. For some elements this is achieved exclusively in a fluoride, for others exclusively in an oxide; and for still others the highest oxidation states of oxides and fluorides are always equal.

<span class="mw-page-title-main">Thorium compounds</span> Chemical compounds

Many compounds of thorium are known: this is because thorium and uranium are the most stable and accessible actinides and are the only actinides that can be studied safely and legally in bulk in a normal laboratory. As such, they have the best-known chemistry of the actinides, along with that of plutonium, as the self-heating and radiation from them is not enough to cause radiolysis of chemical bonds as it is for the other actinides. While the later actinides from americium onwards are predominantly trivalent and behave more similarly to the corresponding lanthanides, as one would expect from periodic trends, the early actinides up to plutonium have relativistically destabilised and hence delocalised 5f and 6d electrons that participate in chemistry in a similar way to the early transition metals of group 3 through 8: thus, all their valence electrons can participate in chemical reactions, although this is not common for neptunium and plutonium.

References

  1. "The MSDS HyperGlossary: Metal Reactive". Interactive Learning Paradigms Incorporated. Retrieved 2007-05-10.
  2. Raymond, Chang (2010). Chemistry (PDF) (tenth ed.). Americas, New York: McGraw-Hill. pp.897-898. ISBN   0077274318. Retrieved 27 February 2018.
  3. The University of Iowa. "Reactive Chemicals". Environmental Health & Safety. Archived from the original on 3 March 2018. Retrieved 2 March 2018.
  4. Quinn, D. J.; Davies, P. A. (2003). "MODELLING RELEASES OF WATER REACTIVE CHEMICALS" (PDF). Symposium Series. 149. Archived from the original (PDF) on 26 February 2018. Retrieved 25 February 2018.
  5. Kapias, T; Griffiths, RF (2001). REACTPOOL: A new model for accidental releases of water-reactive chemicals (PDF). Crown. ISBN   0-7176-1995-8 . Retrieved 25 February 2018.
  6. Landas, Trevor (2 October 2013). "Reactions of Main Group Elements with Water". Chemistry LibreTexts. Retrieved 9 February 2017.
  7. Pilgaard, Michael. "Beryllium: Chemical Reactions". Michael Pilgaard's Table of the Elements. Retrieved 16 February 2018.
  8. "The reaction of magnesium with steam". RSC Education. Retrieved 2024-05-11.
  9. "Reactions of Group 2 Elements with Water". Chemistry LibreTexts. 2013-10-03. Retrieved 2023-09-08.
  10. Clark, Jim. "Reactions of the Group 2 Elements with Water". ChemGuide. Retrieved 16 February 2018.
  11. Landas, Trevor (2 October 2013). "Reactions of Main Group Elements with Water". Chemistry LibreTexts. Retrieved 16 February 2018.
  12. Salutsky, M. L.; Kirby, H. W. (1964-12-01). THE RADIOCHEMISTRY OF RADIUM (Report). Mound Lab., Miamisburg, Ohio (Grace (W.R.) and Co., Clarksville, Md. Washington Research Center). p. 4.
  13. Brown, Paul L.; Matyskin, Artem V.; Ekberg, Christian (2022-06-27). "The aqueous chemistry of radium". Radiochimica Acta. 110 (6–9): 505–513. doi: 10.1515/ract-2021-1141 . ISSN   0033-8230.
  14. Gallagher, RoseMarie; Ingram, Paul (2009). Chemistry IGCSE Revision Guide. Great Clarendon Street, Oxford OX2 6DP: Oxford University Press. pp. 114–115.{{cite book}}: CS1 maint: location (link)
  15. "Reactions of Main Group Elements with Halogens". Chemistry LibreTexts . June 30, 2023.
  16. Cady, George Hamilton (February 1935). "Reaction of Fluorine with Water and with Hydroxides". Journal of the American Chemical Society. 57 (2): 246–249. doi:10.1021/ja01305a006. ISSN   0002-7863.
  17. "Fluoride Salts, Soluble | CAMEO Chemicals | NOAA". cameochemicals.noaa.gov. Retrieved 2024-02-05.