Yo-yo problem

Last updated

In software development, the yo-yo problem is an anti-pattern that occurs when a programmer has to read and understand a program whose inheritance graph is so long and complicated that the programmer has to keep flipping between many different class definitions in order to follow the control flow of the program. It is most often seen in the context of object-oriented programming. The term comes from comparing the bouncing attention of the programmer to the up-down movement of a toy yo-yo. Taenzer, Ganti, and Podar described the problem by name, explaining: "Often we get the feeling of riding a yoyo when we try to understand one of these message trees." [1]

Most practices of object-oriented programming recommend keeping the inheritance graph as shallow as possible, in part to avoid this problem. The use of composition instead of inheritance is also strongly preferred, although this still requires that a programmer keep multiple class definitions in mind at once.

Deep hierarchies are a code smell and a symptom of sub-classification for code reuse. [2]

More generally, the yo-yo problem can also refer to any situation where a person must keep flipping between different sources of information in order to understand a concept.

There are several code refactor techniques to flatten these hierarchies without compromising the overall behavior.

Object-oriented design techniques such as documenting layers of the inheritance hierarchy can reduce the effect of this problem, as they collect in one place the information that the programmer is required to understand.

See also

Related Research Articles

In object-oriented programming, a class is an extensible program-code-template for creating objects, providing initial values for state and implementations of behavior. In many languages, the class name is used as the name for the class, the name for the default constructor of the class, and as the type of objects generated by instantiating the class; these distinct concepts are easily conflated. Although, to the point of conflation, one could argue that is a feature inherent in a language because of its polymorphic nature and why these languages are so powerful, dynamic and adaptable for use compared to languages without polymorphism present. Thus they can model dynamic systems more easily.

In computer programming and software design, code refactoring is the process of restructuring existing computer code—changing the factoring—without changing its external behavior. Refactoring is intended to improve the design, structure, and/or implementation of the software, while preserving its functionality. Potential advantages of refactoring may include improved code readability and reduced complexity; these can improve the source code's maintainability and create a simpler, cleaner, or more expressive internal architecture or object model to improve extensibility. Another potential goal for refactoring is improved performance; software engineers face an ongoing challenge to write programs that perform faster or use less memory.

<i>Design Patterns</i> 1994 software engineering book

Design Patterns: Elements of Reusable Object-Oriented Software (1994) is a software engineering book describing software design patterns. The book was written by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, with a foreword by Grady Booch. The book is divided into two parts, with the first two chapters exploring the capabilities and pitfalls of object-oriented programming, and the remaining chapters describing 23 classic software design patterns. The book includes examples in C++ and Smalltalk.

In software engineering and computer science, abstraction is:

In software engineering, a software design pattern is a general, reusable solution to a commonly occurring problem within a given context in software design. It is not a finished design that can be transformed directly into source or machine code. Rather, it is a description or template for how to solve a problem that can be used in many different situations. Design patterns are formalized best practices that the programmer can use to solve common problems when designing an application or system.

In computer science, an object can be a variable, a data structure, a function, or a method. As regions of memory, objects contain a value and are referenced by identifiers.

Programming paradigms are a way to classify programming languages based on their features. Languages can be classified into multiple paradigms.

In software systems, encapsulation refers to the bundling of data with the mechanisms or methods that operate on the data. It may also refer to the limiting of direct access to some of that data, such as an object's components. Encapsulation allows developers to present a consistent and usable interface which is independent of how a system is implemented internally. As one example, encapsulation can be used to hide the values or state of a structured data object inside a class, preventing direct access to them by clients in a way that could expose hidden implementation details or violate state invariance maintained by the methods.

Software design is the process by which an agent creates a specification of a software artifact intended to accomplish goals, using a set of primitive components and subject to constraints. The term is sometimes used broadly to refer to "all the activity involved in conceptualizing, framing, implementing, commissioning, and ultimately modifying" the software, or more specifically "the activity following requirements specification and before programming, as ... [in] a stylized software engineering process."

Copy-and-paste programming, sometimes referred to as just pasting, is the production of highly repetitive computer programming code, as produced by copy and paste operations. It is primarily a pejorative term; those who use the term are often implying a lack of programming competence. It may also be the result of technology limitations as subroutines or libraries would normally be used instead. However, there are occasions when copy-and-paste programming is considered acceptable or necessary, such as for boilerplate, loop unrolling, or certain programming idioms, and it is supported by some source code editors in the form of snippets.

In object-oriented programming, delegation refers to evaluating a member of one object in the context of another original object. Delegation can be done explicitly, by passing the sending object to the receiving object, which can be done in any object-oriented language; or implicitly, by the member lookup rules of the language, which requires language support for the feature. Implicit delegation is the fundamental method for behavior reuse in prototype-based programming, corresponding to inheritance in class-based programming. The best-known languages that support delegation at the language level are Self, which incorporates the notion of delegation through its notion of mutable parent slots that are used upon method lookup on self calls, and JavaScript; see JavaScript delegation.

In computer programming, a software framework is an abstraction in which software, providing generic functionality, can be selectively changed by additional user-written code, thus providing application-specific software. It provides a standard way to build and deploy applications and is a universal, reusable software environment that provides particular functionality as part of a larger software platform to facilitate the development of software applications, products and solutions.

In software development, code reuse, also called software reuse, is the use of existing software, or software knowledge, to build new software, following the reusability principles.

The object–relational impedance mismatch is a set of conceptual and technical difficulties that are often encountered when organizations store data in relational data stores and then use this data via domain-driven object models, the default method of implementing business-centric objects in object-oriented programming languages. The problems arise not from a failure of addressing data as relational nor as domain objects, but as a result of the difficulty of implementing a data mapping between the data values of the two conceptually different logic models; both models are logical models that can be implemented differently depending upon the technology utilized. These issues are not limited to applications, but exist across an enterprise, whenever data is stored in a relational manner then utilized as domain-driven object models, and vice versa. These difficulties are sometimes mitigated by use of a object-oriented data store, but that too has its own set of implementation difficulties.

In computer programming, Intentional Programming is a programming paradigm developed by Charles Simonyi that encodes in software source code the precise intention which programmers have in mind when conceiving their work. By using the appropriate level of abstraction at which the programmer is thinking, creating and maintaining computer programs become easier. By separating the concerns for intentions and how they are being operated upon, the software becomes more modular and allows for more reusable software code.

In object-oriented programming, inheritance is the mechanism of basing an object or class upon another object or class, retaining similar implementation. Also defined as deriving new classes from existing ones such as super class or base class and then forming them into a hierarchy of classes. In most class-based object-oriented languages like C++, an object created through inheritance, a "child object", acquires all the properties and behaviors of the "parent object", with the exception of: constructors, destructors, overloaded operators and friend functions of the base class. Inheritance allows programmers to create classes that are built upon existing classes, to specify a new implementation while maintaining the same behaviors, to reuse code and to independently extend original software via public classes and interfaces. The relationships of objects or classes through inheritance give rise to a directed acyclic graph.

In object-oriented design, the dependency inversion principle is a specific methodology for loosely coupled software modules. When following this principle, the conventional dependency relationships established from high-level, policy-setting modules to low-level, dependency modules are reversed, thus rendering high-level modules independent of the low-level module implementation details. The principle states:

Object-oriented design (OOD) is the process of planning a system of interacting objects for the purpose of solving a software problem. It is one approach to software design.

<span class="mw-page-title-main">Composition over inheritance</span> Software design pattern

Composition over inheritance in object-oriented programming (OOP) is the principle that classes should favor polymorphic behavior and code reuse by their composition over inheritance from a base or parent class. Ideally all reuse can be achieved by assembling existing components, but in practice inheritance is often needed to make new ones. Therefore inheritance and object composition typically work hand-in-hand, as discussed in the book Design Patterns (1994).

Object-Oriented Programming (OOP) is a programming paradigm based on the concept of "objects", which can contain data and code. The data is in the form of fields, and the code is in the form of procedures.

References

  1. Taenzer, David; Ganti, Murthy; Podar, Sunil (1989). "Problems in Object-Oriented Software Reuse" (PDF). ECOOP 89: Proceedings of the Third European Conference on Object-Oriented Programming, 1989. Cambridge University Press. pp. 33–34. Retrieved 22 March 2013.
  2. "Code Smell 11 - Subclassification for Code Reuse". hashnode. Retrieved 18 January 2021.