2002 French gene therapy trials

Last updated

The 2002 French gene therapy trials were experimental gene therapy trials performed on children suffering from severe combined immunodeficiency (SCID). The trials were based in Paris and led by researchers Alain Fischer and Marina Cavazzana-Calvo. Whilst the experiment initially seemed successful, many of the children began showing symptoms of various cancer-like diseases as a result of the gene manipulation. The experiment, and others like it, were subsequently shut down. [1]

Contents

Trials

The trials took place at the Necker Hospital in Paris, France in 2002. The lead researchers were Dr. Alain Fischer and Dr. Marina Cavazzana-Calvo, who were both employed by the hospital. [2] The researchers were investigating treatments for severe combined immune deficiency (SCID), a disease that had been linked to the X-chromosome. [3] SCID has the effect of preventing the formation of several key immune system factors that aid in the body's ability to fight of infectious diseases. [3] The goal of the gene therapy was to utilize and activate hematopoietic stem cells (HSCs) in the hopes of combating the progression of the immune deficiency. [3] The methodology of the experiment involved using retroviral vectors to stimulate the HSCs, which had been implicated in potential treatment for several communicable and non-communicable diseases. [3] SCID was rare in its prevalence and involved a complex mechanism that involved harmful lymphocytic differentiation. [4] The test subjects for this experiment were 11 children of various ages who presented with SCID and were admitted into Necker Hospital. Initially, after the therapy was administered to the children, some showed signs of improved conditions. One child, a three-year-old, became the face of the experiment's success, as the symptoms of his once life-threatening disease began to diminish. [5] This was a breakthrough in the application capabilities of gene therapy in treating various morbidities.

In the months following the application of the gene therapy, several of the 11 children began to show signs of new disease symptoms that were seemingly a direct result of their participation in the experimental trial. Two of the children, including the three-year-old boy, began showing signs of various cancer-like diseases. [5] [4] The most prevalent of these "vector-triggered" cancers seemed to present with the same symptoms of leukemia, the abnormal proliferation of leukocytes in the bone marrow and other organs. [4] These symptoms were characterized as "leukemia-like lymphocyte proliferation" seemingly activated by the retroviral vectors used during the duration of the experiment. [4] While the majority of the children involved in the trial did not show these symptoms, the presentation of this leukemia-like cancer in the 2 subjects was a cause for concern and reported by Dr. Fischer and Dr. Cavazzana-Calvo. [3]

Post-trial and legacy

Following the reporting of the 2 subjects with leukemia-like cancer, several steps were taken to reduce the likelihood of further unintended consequences. The experimental trial itself was immediately suspended and inquiries were made into how the cancer was activated and where responsibility for the trials would fall. [4] Experimental trials with similar designs in neighboring European countries were allowed to continue, though they were cognizant of the negative results seen in France. [4] In the United States, all experimental procedures that mimicked the methodology utilized in the French Trials were indefinitely suspended by the United States Food and Drug Administration (USFDA). [2] Although the presentation of the disease was only seen in the French trials, the FDA stated that suspending the US trials was a "precautionary measure" to ensure that the results seen in France would not be replicated in the US. [2] Beyond the US, the United Kingdom also voiced its concern for the French results and stated that similar trials in the UK would ensure safeguards against those harmful side-effects. [2]

Although the trial caused very harmful side-effects in some of its subjects and was shut down as a result, for the most part it was successful in helping to suppress the symptoms of the immune deficiency in a majority of the children involved. [4] The relative success of this trial lead to subsequent retroviral vector retrials, experimenting with different dose levels and precautions against the development of the cancer, within France itself. [4] Though some more subjects showed signs of the cancer, the majority of the subjects showed improvement in their conditions stemming from the experiment. [4] The mixed results of the French trial helped spark a worldwide debate about the efficacy of retroviral vector gene therapy, and gene therapy as a whole. More specifically, the trial led to the discussion as to whether or not the known risks of gene therapy, such as the possibility of subsequent cancer development, and the potential benefits of gene manipulation exist in a way that would justify the continued use of these trials to correct life-threatening illnesses. [3] [4] [5]

Notes

  1. Hacein-Bey-Abina S, Garrigue A, Wang GP, Soulier J, Lim A, Morillon E, Clappier E, Caccavelli L, Delabesse E, Beldjord K, Asnafi V, MacIntyre E, Dal Cortivo L, Radford I, Brousse N, Sigaux F, Moshous D, Hauer J, Borkhardt A, Belohradsky BH, Wintergerst U, Velez MC, Leiva L, Sorensen R, Wulffraat N, Blanche S, Bushman FD, Fischer A, Cavazzana-Calvo M (September 2008). "Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1". The Journal of Clinical Investigation. 118 (9): 3132–42. doi:10.1172/JCI35700. PMC   2496963 . PMID   18688285.
  2. 1 2 3 4 Marwick, Charles (25 January 2003). "FDA halts gene therapy trials after leukemia case in France". The BMJ. 326 (7382): 181. doi:10.1136/bmj.326.7382.181/a. PMC   1125057 . PMID   12543825.
  3. 1 2 3 4 5 6 Kohn, Donald B; Sadelane, Michel; Dunbar, Cynthia (August 2003). "American society of gene therapy (ASGT) ad hoc subcommittee on retroviral-mediated gene transfer to hematopoetic stem cells". Molecular Therapy. 9 (2): 180–187. doi: 10.1016/S1525-0016(03)00212-0 . PMID   12907140.
  4. 1 2 3 4 5 6 7 8 9 10 Edelstein, Michael L; Abedi, Mohamed R (23 August 2007). "Gene therapy clinical trials worldwide to 2007 - an update". The Journal of Gene Medicine. 9 (10): 833–842. doi: 10.1002/jgm.1100 . PMID   17721874.
  5. 1 2 3 Check, Erika (14 November 2002). "Gene Therapy: a tragic setback". Nature. 420 (6912): 116–118. Bibcode:2002Natur.420..116C. doi: 10.1038/420116a . PMID   12432357.

Related Research Articles

<span class="mw-page-title-main">Gene therapy</span> Medical field

Gene therapy is a medical technology that aims to produce a therapeutic effect through the manipulation of gene expression or through altering the biological properties of living cells.

<span class="mw-page-title-main">Severe combined immunodeficiency</span> Genetic disorder leading to severe impairment of the immune system

Severe combined immunodeficiency (SCID), also known as Swiss-type agammaglobulinemia, is a rare genetic disorder characterized by the disturbed development of functional T cells and B cells caused by numerous genetic mutations that result in differing clinical presentations. SCID involves defective antibody response due to either direct involvement with B lymphocytes or through improper B lymphocyte activation due to non-functional T-helper cells. Consequently, both "arms" of the adaptive immune system are impaired due to a defect in one of several possible genes. SCID is the most severe form of primary immunodeficiencies, and there are now at least nine different known genes in which mutations lead to a form of SCID. It is also known as the bubble boy disease and bubble baby disease because its victims are extremely vulnerable to infectious diseases and some of them, such as David Vetter, have become famous for living in a sterile environment. SCID is the result of an immune system so highly compromised that it is considered almost absent.

Adenosine deaminase deficiency is a metabolic disorder that causes immunodeficiency. It is caused by mutations in the ADA gene. It accounts for about 10–15% of all cases of autosomal recessive forms of severe combined immunodeficiency (SCID) among non-inbred populations.

<span class="mw-page-title-main">Wiskott–Aldrich syndrome</span> Medical condition

Wiskott–Aldrich syndrome (WAS) is a rare X-linked recessive disease characterized by eczema, thrombocytopenia, immune deficiency, and bloody diarrhea. It is also sometimes called the eczema-thrombocytopenia-immunodeficiency syndrome in keeping with Aldrich's original description in 1954. The WAS-related disorders of X-linked thrombocytopenia (XLT) and X-linked congenital neutropenia (XLN) may present with similar but less severe symptoms and are caused by mutations of the same gene.

Virotherapy is a treatment using biotechnology to convert viruses into therapeutic agents by reprogramming viruses to treat diseases. There are three main branches of virotherapy: anti-cancer oncolytic viruses, viral vectors for gene therapy and viral immunotherapy. These branches use three different types of treatment methods: gene overexpression, gene knockout, and suicide gene delivery. Gene overexpression adds genetic sequences that compensate for low to zero levels of needed gene expression. Gene knockout uses RNA methods to silence or reduce expression of disease-causing genes. Suicide gene delivery introduces genetic sequences that induce an apoptotic response in cells, usually to kill cancerous growths. In a slightly different context, virotherapy can also refer more broadly to the use of viruses to treat certain medical conditions by killing pathogens.

<i>Gammaretrovirus</i> Genus of viruses

Gammaretrovirus is a genus in the Retroviridae family. Example species are the murine leukemia virus and the feline leukemia virus. They cause various sarcomas, leukemias and immune deficiencies in mammals, reptiles and birds.

Hypogammaglobulinemia is an immune system disorder in which not enough gamma globulins are produced in the blood. This results in a lower antibody count, which impairs the immune system, increasing risk of infection. Hypogammaglobulinemia may result from a variety of primary genetic immune system defects, such as common variable immunodeficiency, or it may be caused by secondary effects such as medication, blood cancer, or poor nutrition, or loss of gamma globulins in urine, as in nonselective glomerular proteinuria. Patients with hypogammaglobulinemia have reduced immune function; important considerations include avoiding use of live vaccines, and take precautionary measures when traveling to regions with endemic disease or poor sanitation such as receiving immunizations, taking antibiotics abroad, drinking only safe or boiled water, arranging appropriate medical cover in advance of travel, and ensuring continuation of any immunoglobulin infusions needed.

Enzyme replacement therapy (ERT) is a medical treatment which replaces an enzyme that is deficient or absent in the body. Usually, this is done by giving the patient an intravenous (IV) infusion of a solution containing the enzyme.

Virus latency is the ability of a pathogenic virus to lie dormant within a cell, denoted as the lysogenic part of the viral life cycle. A latent viral infection is a type of persistent viral infection which is distinguished from a chronic viral infection. Latency is the phase in certain viruses' life cycles in which, after initial infection, proliferation of virus particles ceases. However, the viral genome is not eradicated. The virus can reactivate and begin producing large amounts of viral progeny without the host becoming reinfected by new outside virus, and stays within the host indefinitely.

<span class="mw-page-title-main">X-linked severe combined immunodeficiency</span> Medical condition

X-linked severe combined immunodeficiency (X-SCID) is an immunodeficiency disorder in which the body produces very few T cells and NK cells.

<span class="mw-page-title-main">Viral vector</span> Biotechnology to deliver genetic material into a cell

Viral vectors are tools commonly used by molecular biologists to deliver genetic material into cells. This process can be performed inside a living organism or in cell culture. Viruses have evolved specialized molecular mechanisms to efficiently transport their genomes inside the cells they infect. Delivery of genes or other genetic material by a vector is termed transduction and the infected cells are described as transduced. Molecular biologists first harnessed this machinery in the 1970s. Paul Berg used a modified SV40 virus containing DNA from the bacteriophage λ to infect monkey kidney cells maintained in culture.

Primary immunodeficiencies are disorders in which part of the body's immune system is missing or does not function normally. To be considered a primary immunodeficiency (PID), the immune deficiency must be inborn, not caused by secondary factors such as other disease, drug treatment, or environmental exposure to toxins. Most primary immunodeficiencies are genetic disorders; the majority are diagnosed in children under the age of one, although milder forms may not be recognized until adulthood. While there are over 430 recognized inborn errors of immunity (IEIs) as of 2019, the vast majority of which are PIDs, most are very rare. About 1 in 500 people in the United States are born with a primary immunodeficiency. Immune deficiencies can result in persistent or recurring infections, auto-inflammatory disorders, tumors, and disorders of various organs. There are currently limited treatments available for these conditions; most are specific to a particular type of PID. Research is currently evaluating the use of stem cell transplants (HSCT) and experimental gene therapies as avenues for treatment in limited subsets of PIDs.

<span class="mw-page-title-main">Genetically modified virus</span> Species of virus

A genetically modified virus is a virus that has been altered or generated using biotechnology methods, and remains capable of infection. Genetic modification involves the directed insertion, deletion, artificial synthesis or change of nucleotide bases in viral genomes. Genetically modified viruses are mostly generated by the insertion of foreign genes intro viral genomes for the purposes of biomedical, agricultural, bio-control, or technological objectives. The terms genetically modified virus and genetically engineered virus are used synonymously.

<span class="mw-page-title-main">Vectors in gene therapy</span>

Gene therapy utilizes the delivery of DNA into cells, which can be accomplished by several methods, summarized below. The two major classes of methods are those that use recombinant viruses and those that use naked DNA or DNA complexes.

<span class="mw-page-title-main">Reticular dysgenesis</span> Medical condition

Reticular dysgenesis (RD) is a rare, inherited autosomal recessive disease that results in immunodeficiency. Individuals with RD have mutations in both copies of the AK2 gene. Mutations in this gene lead to absence of AK2 protein. AK2 protein allows hematopoietic stem cells to differentiate and proliferate. Hematopoietic stem cells give rise to blood cells.

<span class="mw-page-title-main">Stefan Karlsson (professor)</span>

Stefan Karlsson is a Professor of Molecular Medicine and Gene Therapy at the Lund Stem Cell Center, in the Department of Laboratory Medicine, Lund University, Sweden. He is recognized for significant contributions to the fields of gene therapy and hematopoietic stem cell biology and in 2009 was awarded the Tobias Prize by The Royal Swedish Academy of Sciences.

Autologous CD34+ enriched cell fraction that contains CD34+ cells transduced with retroviral vector that encodes for the human ADA cDNA sequence, sold under the brand name Strimvelis, is a medication used to treat severe combined immunodeficiency due to adenosine deaminase deficiency (ADA-SCID).

<span class="mw-page-title-main">Marina Cavazzana</span> Italian physician and cellular biologist

Marina Cavazzana is a professor of Paediatric Immunology at the Necker-Enfants Malades Hospital and the Imagine Institute, as well as an academic at Paris Descartes University. She was awarded the Irène Joliot-Curie Prize in 2012 and elected to the National Academy of Medicine in 2019.

Alain Fischer is a doctor, professor of pediatric immunology and French researcher in biology.

Gibbon-ape leukemia virus (GaLV) is an oncogenic, type C retrovirus that has been isolated from primate neoplasms, including the white-handed gibbon and woolly monkey. The virus was identified as the etiological agent of hematopoietic neoplasms, leukemias, and immune deficiencies within gibbons in 1971, during the epidemic of the late 1960s and early 1970s. Epidemiological research into the origins of GaLV has developed two hypotheses for the virus' emergence. These include cross-species transmission of the retrovirus present within a species of East Asian rodent or bat, and the inoculation or blood transfusion of a MbRV-related virus into captured gibbons populations housed at medical research institutions. The virus was subsequently identified in captive gibbon populations in Thailand, the US and Bermuda.