The 4-1000A/8166 is a radial-beam tetrode designed for use in radio transmitters. The 4-1000A is the largest of a series of tubes including the 4-65A, 4-125A, 4-250A, and the 4-400A. These tubes share a common naming convention in which the first number identifies the number of elements contained within the tube; i.e., the number "4" identifies the tube as a tetrode which contains four elements (filament, control grid, screen grid, and anode), and the second number indicates the maximum continuous power dissipation of the anode in Watts. The entire family of tubes can be used as oscillators, modulators, and amplifiers.
The 4-1000A is a relatively large glass tube with an overall height of 9.25 inches and a diameter of 5 inches. It is designed to operate with its plate (anode) at an orange-red color due to the "getter" being a zirconium compound on the anode structure which requires a great deal of heat to be effective. The cathode is a directly heated, thoriated-tungsten filament rated at 7.5 volts at 21 amperes. Connections to the filament and grids are made via a special 5-pin socket, and the anode connection is at the top of the tube.
The tube may be operated as a class C amplifier in which a single tube can provide up to 3340 watts of RF power. A pair of tubes may be operated as an audio-frequency modulator for an AM transmitter; in this case a pair of tubes will provide up to 3,840 watts of audio power. [1]
The 4-1000A is of radial construction; the most obvious feature is the large, roughly cylindrical, blackish anode suspended from the top of the tube. The anode, which may be constructed out of metal or graphite, is finned for increased heat dissipation. The filament and grids are supported from the lower section/base of the tube.
The 4-1000A was available from multiple manufacturers including RCA, [2] EIMAC, [3] AMPEREX, and Triton.
A complete cooling system is required to operate the tube at rated values. A centrifugal fan pressurizes the equipment chassis and provides a continuous stream of cooling air. A specially designed socket is used to direct the air over the filament and grid connections, and a glass chimney (Pyrex) then directs the air around the tube's glass envelope; chassis-mounted metal clips are used to center the chimney around the tube. Finally, a finned, cylindrical heat sink is attached to the anode connection (top of the tube) to provide additional cooling for the anode's glass-to-metal seal.
The 4-1000A was modified for operation in pulsed applications; the modified tube, identified as the 4PR1000A/8189, can be operated with anode voltages as high as 30 kV DC and peak plate current of 8.0 Amperes, but at a reduced duty cycle. [4]
A triode is an electronic amplifying vacuum tube consisting of three electrodes inside an evacuated glass envelope: a heated filament or cathode, a grid, and a plate (anode). Developed from Lee De Forest's 1906 Audion, a partial vacuum tube that added a grid electrode to the thermionic diode, the triode was the first practical electronic amplifier and the ancestor of other types of vacuum tubes such as the tetrode and pentode. Its invention helped make amplified radio technology and long-distance telephony possible. Triodes were widely used in consumer electronics devices such as radios and televisions until the 1970s, when transistors replaced them. Today, their main remaining use is in high-power RF amplifiers in radio transmitters and industrial RF heating devices. In recent years there has been a resurgence in demand for low power triodes due to renewed interest in tube-type audio systems by audiophiles who prefer the sound of tube-based electronics.
A vacuum tube, electron tube, valve, or tube is a device that controls electric current flow in a high vacuum between electrodes to which an electric potential difference has been applied.
A tetrode is a vacuum tube having four active electrodes. The four electrodes in order from the centre are: a thermionic cathode, first and second grids, and a plate. There are several varieties of tetrodes, the most common being the screen-grid tube and the beam tetrode. In screen-grid tubes and beam tetrodes, the first grid is the control grid and the second grid is the screen grid. In other tetrodes one of the grids is a control grid, while the other may have a variety of functions.
The control grid is an electrode used in amplifying thermionic valves such as the triode, tetrode and pentode, used to control the flow of electrons from the cathode to the anode (plate) electrode. The control grid usually consists of a cylindrical screen or helix of fine wire surrounding the cathode, and is surrounded in turn by the anode. The control grid was invented by Lee De Forest, who in 1906 added a grid to the Fleming valve to create the first amplifying vacuum tube, the Audion (triode).
6SN7 is a dual triode vacuum tube with an eight-pin octal base. It provides a medium gain. The 6SN7 is basically two 6J5 triodes in one envelope.
KT66 is the designator for a beam power tube introduced by Marconi-Osram Valve Co. Ltd. (M-OV) of Britain in 1937 and marketed for application as a power amplifier for audio frequencies and driver for radio frequencies. The KT66 is a beam tetrode that utilizes partially collimated electron beams to form a low potential space charge region between the anode and screen grid to return anode secondary emission electrons to the anode and offers significant performance improvements over comparable power pentodes. In the 21st century, the KT66 is manufactured and used in some high fidelity audio amplifiers and musical instrument amplifiers.
6L6 is the designator for a beam power tube introduced by Radio Corporation of America in April 1936 and marketed for application as a power amplifier for audio frequencies. The 6L6 is a beam tetrode that utilizes formation of a low potential space charge region between the anode and screen grid to return anode secondary emission electrons to the anode and offers significant performance improvements over power pentodes. The 6L6 was the first successful beam power tube marketed. In the 21st century, variants of the 6L6 are manufactured and used in some high fidelity audio amplifiers and musical instrument amplifiers.
A beam tetrode, sometimes called a beam power tube, is a type of vacuum tube or thermionic valve that has two grids and forms the electron stream from the cathode into multiple partially collimated beams to produce a low potential space charge region between the anode and screen grid to return anode secondary emission electrons to the anode when the anode potential is less than that of the screen grid. Beam tetrodes are usually used for power amplification, from audio frequency to radio frequency. The beam tetrode produces greater output power than a triode or pentode with the same anode supply voltage. The first beam tetrode marketed was the Marconi N40, introduced in 1935. Beam tetrodes manufactured and used in the 21st century include the 4CX250B, KT66 and variants of the 6L6.
A mercury-arc valve or mercury-vapor rectifier or (UK) mercury-arc rectifier is a type of electrical rectifier used for converting high-voltage or high-current alternating current (AC) into direct current (DC). It is a type of cold cathode gas-filled tube, but is unusual in that the cathode, instead of being solid, is made from a pool of liquid mercury and is therefore self-restoring. As a result mercury-arc valves, when used as intended, are far more robust and durable and can carry much higher currents than most other types of gas discharge tube. Some examples have been in continuous service, rectifying 50-ampere currents, for decades.
The EL34 is a thermionic vacuum tube of the power pentode type. The EL34 was introduced in 1955 by Mullard, who were owned by Philips. The EL34 has an octal base and is found mainly in the final output stages of audio amplification circuits; it was also designed to be suitable as a series regulator by virtue of its high permissible voltage between heater and cathode and other parameters. The American RETMA tube designation number for this tube is 6CA7. The USSR analog was 6P27S.
Vacuum tubes produced in the former Soviet Union and in present-day Russia carry their own unique designations. Some confusion has been created in "translating" these designations, as they use Cyrillic rather than Latin characters.
The GU-50 is a power pentode vacuum tube intended for 50 watt operation as a linear RF amplifier on frequencies up to 120 MHz. It is, in fact, a Soviet-produced copy of the Telefunken LS-50 power pentode, possibly reverse-engineered from German (Wehrmacht) military radios captured during World War II, or based on documentation, machines and materials captured as a trophy. It is one of the more unusual types of tube because of its non-standard 8-pin base and a metal "cap" with a plastic "handle" on top of the envelope - which is meant to ease extracting the tube from its socket. One stock Russian-produced socket includes a rugged die-cast metal cage-like enclosure for the tube with spring-loaded locking lid.. Another stock Russian-produced socket is stamped of light aluminium sheet metal, without a lid on top.
A valve RF amplifier or tube amplifier (U.S.) is a device for electrically amplifying the power of an electrical radio frequency signal.
Machlett Laboratories was a Northeastern United States-based company that manufactured X-ray and high-power vacuum tubes. Machlett was a large producer of the tubes and developed accessories to be used with them as well.
The 833A is a vacuum tube constructed for medium power oscillator or class B or C amplifier applications. It is a medium-mu power triode with 300 watts CCS or 350 watts ICAS anode dissipation. The long grid and anode leads, plus high internal capacitance, limits this tube to 15-30 MHz maximum frequency. Being medium mu, it is normally not suitable for grounded grid operation.
In the years 1942-1944, the Radio Manufacturers Association used a descriptive nomenclature system for industrial, transmitting, and special-purpose vacuum tubes. The numbering scheme was distinct from both the numbering schemes used for standard receiving tubes, and the existing transmitting tube numbering systems used previously, such as the "800 series" numbers originated by RCA and adopted by many others.
8974 / X-2159 is a power tetrode designed for megawatt power levels in industrial and broadcast applications.
The 807 is a beam tetrode vacuum tube, widely used in audio- and radio-frequency power amplifier applications.
The Doherty amplifier is a modified class B radio frequency amplifier invented by William H. Doherty of Bell Telephone Laboratories Inc in 1936. Whereas conventional class B amplifiers can clip on high input-signal levels, the Doherty power amplifier can accommodate signals with high peak-to-average power ratios by using two amplifier circuits within the one overall amplifier to accommodate the different signal levels. In this way, the amplifier achieves a high level of linearity while retaining good power efficiency.