4-1000A

Last updated
4-1000A Power Tube 4-1000A linear RF deck build by K5LAD.jpg
4-1000A Power Tube

The 4-1000A/8166 is a radial-beam tetrode designed for use in radio transmitters. The 4-1000A is the largest of a series of tubes including the 4-65A, 4-125A, 4-250A, and the 4-400A. These tubes share a common naming convention in which the first number identifies the number of elements contained within the tube; i.e., the number "4" identifies the tube as a tetrode which contains four elements (filament, control grid, screen grid, and anode), and the second number indicates the maximum continuous power dissipation of the anode in Watts. The entire family of tubes can be used as oscillators, modulators, and amplifiers.

Contents

Specifications

The 4-1000A is a relatively large glass tube with an overall height of 9.25 inches and a diameter of 5 inches. It is designed to operate with its plate (anode) at an orange-red color due to the "getter" being a zirconium compound on the anode structure which requires a great deal of heat to be effective. The cathode is a directly heated, thoriated-tungsten filament rated at 7.5 volts at 21 amperes. Connections to the filament and grids are made via a special 5-pin socket, and the anode connection is at the top of the tube.

The tube may be operated as a class C amplifier in which a single tube can provide up to 3340 watts of RF power. A pair of tubes may be operated as an audio-frequency modulator for an AM transmitter; in this case a pair of tubes will provide up to 3,840 watts of audio power. [1]

Internal construction

The 4-1000A is of radial construction; the most obvious feature is the large, roughly cylindrical, blackish anode suspended from the top of the tube. The anode, which may be constructed out of metal or graphite, is finned for increased heat dissipation. The filament and grids are supported from the lower section/base of the tube.

Sources

The 4-1000A was available from multiple manufacturers including RCA, [2] EIMAC, [3] AMPEREX, and Triton.

Cooling

A complete cooling system is required to operate the tube at rated values. A centrifugal fan pressurizes the equipment chassis and provides a continuous stream of cooling air. A specially designed socket is used to direct the air over the filament and grid connections, and a glass chimney (Pyrex) then directs the air around the tube's glass envelope; chassis-mounted metal clips are used to center the chimney around the tube. Finally, a finned, cylindrical heat sink is attached to the anode connection (top of the tube) to provide additional cooling for the anode's glass-to-metal seal.

Variants

The 4-1000A was modified for operation in pulsed applications; the modified tube, identified as the 4PR1000A/8189, can be operated with anode voltages as high as 30 kV DC and peak plate current of 8.0 Amperes, but at a reduced duty cycle. [4]

Related Research Articles

<span class="mw-page-title-main">Triode</span> Single-grid amplifying vacuum tube having three active electrodes

A triode is an electronic amplifying vacuum tube consisting of three electrodes inside an evacuated glass envelope: a heated filament or cathode, a grid, and a plate (anode). Developed from Lee De Forest's 1906 Audion, a partial vacuum tube that added a grid electrode to the thermionic diode, the triode was the first practical electronic amplifier and the ancestor of other types of vacuum tubes such as the tetrode and pentode. Its invention helped make amplified radio technology and long-distance telephony possible. Triodes were widely used in consumer electronics devices such as radios and televisions until the 1970s, when transistors replaced them. Today, their main remaining use is in high-power RF amplifiers in radio transmitters and industrial RF heating devices. In recent years there has been a resurgence in demand for low power triodes due to renewed interest in tube-type audio systems by audiophiles who prefer the sound of tube-based electronics.

<span class="mw-page-title-main">Vacuum tube</span> Device that controls current between electrodes

A vacuum tube, electron tube, valve, or tube, is a device that controls electric current flow in a high vacuum between electrodes to which an electric potential difference has been applied.

A tetrode is a vacuum tube having four active electrodes. The four electrodes in order from the centre are: a thermionic cathode, first and second grids, and a plate. There are several varieties of tetrodes, the most common being the screen-grid tube and the beam tetrode. In screen-grid tubes and beam tetrodes, the first grid is the control grid and the second grid is the screen grid. In other tetrodes one of the grids is a control grid, while the other may have a variety of functions.

<span class="mw-page-title-main">Valve amplifier</span> Type of electronic amplifier

A valve amplifier or tube amplifier is a type of electronic amplifier that uses vacuum tubes to increase the amplitude or power of a signal. Low to medium power valve amplifiers for frequencies below the microwaves were largely replaced by solid state amplifiers in the 1960s and 1970s. Valve amplifiers can be used for applications such as guitar amplifiers, satellite transponders such as DirecTV and GPS, high quality stereo amplifiers, military applications and very high power radio and UHF television transmitters.

<span class="mw-page-title-main">Control grid</span> Electrode used to control electron flow within a vacuum tube

The control grid is an electrode used in amplifying thermionic valves such as the triode, tetrode and pentode, used to control the flow of electrons from the cathode to the anode (plate) electrode. The control grid usually consists of a cylindrical screen or helix of fine wire surrounding the cathode, and is surrounded in turn by the anode. The control grid was invented by Lee De Forest, who in 1906 added a grid to the Fleming valve to create the first amplifying vacuum tube, the Audion (triode).

<span class="mw-page-title-main">6SN7</span> Dual low-frequency, medium-gain octal triode vacuum tube

6SN7 is a dual triode vacuum tube with an eight-pin octal base. It provides a medium gain. The 6SN7 is basically two 6J5 triodes in one envelope.

<span class="mw-page-title-main">6L6</span> Vacuum tube

6L6 is the designator for a beam power tube introduced by Radio Corporation of America in April 1936 and marketed for application as a power amplifier for audio frequencies. The 6L6 is a beam tetrode that utilizes formation of a low potential space charge region between the anode and screen grid to return anode secondary emission electrons to the anode and offers significant performance improvements over power pentodes. The 6L6 was the first successful beam power tube marketed. In the 21st century, variants of the 6L6 are manufactured and used in some high fidelity audio amplifiers and musical instrument amplifiers.

<span class="mw-page-title-main">All American Five</span> American radio with 5 vacuum tubes

The term All American Five is a colloquial name for mass-produced, superheterodyne radio receivers that used five vacuum tubes in their design. These radio sets were designed to receive amplitude modulation (AM) broadcasts in the medium wave band, and were manufactured in the United States from the mid-1930s until the early 1960s. By eliminating a power transformer, cost of the units was kept low; the same principle was later applied to television receivers. Variations in the design for lower cost, shortwave bands, better performance or special power supplies existed, although many sets used an identical set of vacuum tubes.

<span class="mw-page-title-main">Beam tetrode</span>

A beam tetrode, sometimes called a beam power tube, is a type of vacuum tube or thermionic valve that has two grids and forms the electron stream from the cathode into multiple partially collimated beams to produce a low potential space charge region between the anode and screen grid to return anode secondary emission electrons to the anode when the anode potential is less than that of the screen grid. Beam tetrodes are usually used for power amplification, from audio frequency to radio frequency. The beam tetrode produces greater output power than a triode or pentode with the same anode supply voltage. The first beam tetrode marketed was the Marconi N40, introduced in 1935. Beam tetrodes manufactured and used in the 21st century include the 4CX250B, KT66 and variants of the 6L6.

<span class="mw-page-title-main">Mercury-arc valve</span> Type of electrical rectifier with a liquid cathode

A mercury-arc valve or mercury-vapor rectifier or (UK) mercury-arc rectifier is a type of electrical rectifier used for converting high-voltage or high-current alternating current (AC) into direct current (DC). It is a type of cold cathode gas-filled tube, but is unusual in that the cathode, instead of being solid, is made from a pool of liquid mercury and is therefore self-restoring. As a result mercury-arc valves, when used as intended, are far more robust and durable and can carry much higher currents than most other types of gas discharge tube. Some examples have been in continuous service, rectifying 50-ampere currents, for decades.

<span class="mw-page-title-main">GU-50</span>

The GU-50 is a power pentode vacuum tube intended for 50 watt operation as a linear RF amplifier on frequencies up to 120 MHz. It is, in fact, a Soviet-produced copy of the Telefunken LS-50 power pentode, possibly reverse-engineered from German (Wehrmacht) military radios captured during World War II, or based on documentation, machines and materials captured as a trophy. It is one of the more unusual types of tube because of its non-standard 8-pin base and a metal "cap" with a plastic "handle" on top of the envelope - which is meant to ease extracting the tube from its socket. One stock Russian-produced socket includes a rugged die-cast metal cage-like enclosure for the tube with spring-loaded locking lid.. Another stock Russian-produced socket is stamped of light aluminium sheet metal, without a lid on top.

<span class="mw-page-title-main">Valve RF amplifier</span> Device for electrically amplifying the power of an electrical radio frequency signal

A valve RF amplifier or tube amplifier (U.S.) is a device for electrically amplifying the power of an electrical radio frequency signal.

Machlett Laboratories was a Northeastern United States-based company that manufactured X-ray and high-power vacuum tubes. Machlett was a large producer of the tubes and developed accessories to be used with them as well.

Technical specifications and detailed information on the valve audio amplifier, including its development history.

<span class="mw-page-title-main">833A</span> Type of vacuum tube

The 833A is a vacuum tube constructed for medium power oscillator or class B or C amplifier applications. It is a medium-mu power triode with 300 watts CCS or 350 watts ICAS anode dissipation. The long grid and anode leads, plus high internal capacitance, limits this tube to 15-30 MHz maximum frequency. Being medium mu, it is normally not suitable for grounded grid operation.

In the years 1942-1944, the Radio Manufacturers Association used a descriptive nomenclature system for industrial, transmitting, and special-purpose vacuum tubes. The numbering scheme was distinct from both the numbering schemes used for standard receiving tubes, and the existing transmitting tube numbering systems used previously, such as the "800 series" numbers originated by RCA and adopted by many others.

<span class="mw-page-title-main">8974</span>

8974 / X-2159 is a power tetrode designed for megawatt power levels in industrial and broadcast applications.

<span class="mw-page-title-main">807 (vacuum tube)</span>

The 807 is a beam tetrode vacuum tube, widely used in audio- and radio-frequency power amplifier applications.

The Doherty amplifier is a modified class B radio frequency amplifier invented by William H. Doherty of Bell Telephone Laboratories Inc in 1936. Whereas conventional class B amplifiers can clip on high input-signal levels, the Doherty power amplifier can accommodate signals with high peak-to-average power ratios by using two amplifier circuits within the one overall amplifier to accommodate the different signal levels. In this way, the amplifier achieves a high level of linearity while retaining good power efficiency.

References

  1. Data sheet for the Eimac 4-1000A
  2. RCA Transmitting Tubes TT4, 1956
  3. EIMAC Power Grid Tubes Quick Reference Catalog 175
  4. Data sheet for EIMAC 8189 / 4PR1000A