5G Broadcast (5GB), officially known as LTE-based 5G Terrestrial Broadcast, is a system for the distribution of television and other broadcast media content via terrestrial radio broadcast networks based on downlink-only LTE technology. [1] [2]
5G Broadcast focuses mainly on mobile use cases like smartphones and in-car radio. It does not require the use of a SIM card or cellular subscription, but only a device like a smartphone capable of receiving 5G Broadcast signals, thus bypassing telecommunication and cellular operators entirely. [3] [4] A stated advantage has been the ability to reduce load off mobile networks during large live broadcasts, and not requiring an internet connection. [5] In a broadcast mode, data can be sent to multiple receivers at once (point-to-multipoint) as opposed to point-to-point. [6]
The technology has been tested in numerous countries for a number of years, and has been tipped in Europe as the potential future for digital terrestrial television, which currently are mainly based on the DVB-T2 standard. [7] Public broadcasters of France, Italy, Germany, the Netherlands, Ireland and Austria have signed a cooperation pact in 2023 and have stated the use of the UHF 470–694 MHz frequency band to be used for 5G Broadcast. [8]
In September 2023 the specs of the standard was updated and published by the 3GPP organisation. It started being tested by some low-power television stations in the USA [9] and also in Spain by UHD. [10] In Germany, 5G Broadcast has been trialed and in May 2024 another pilot project is set to begin in the city of Halle. [11] It is separate from the ATSC 3.0 transmission standard which is also being rolled out. [12] In France, a trial is operated by TDF since the Paris 2024 Olympic games.
In comparison with ATSC 3.0, the "NextGenTV" IP-based broadcasting standard being introduced in the USA, 5G Broadcast has been criticised for lower bandwidth efficiency, and the lack of a future-proofing "bootstrap" signal to enable the introduction of new physical-level modulation profiles. However, 5G Broadcast was seen as having the advantage in most other aspects of performance. [13]
3G is the third generation of cellular network technology, representing a significant advancement over 2G, particularly in terms of data transfer speeds and mobile internet capabilities. While 2G networks, including technologies such as GPRS and EDGE, supported limited data services, 3G introduced significantly higher-speed mobile internet, improved voice quality, and enhanced multimedia capabilities. Although 3G enabled faster data speeds compared to 2G, it provided moderate internet speeds suitable for general browsing and multimedia content, but not for high-definition or data-intensive applications. Based on the International Mobile Telecommunications-2000 (IMT-2000) specifications established by the International Telecommunication Union (ITU), 3G supports a range of services, including voice telephony, mobile internet access, video calls, video streaming, and mobile TV.
4G is the fourth generation of cellular network technology, succeeding 3G and designed to support all-IP communications and broadband services, enabling a variety of data-intensive applications. A 4G system must meet the performance requirements defined by the International Telecommunication Union (ITU) in IMT Advanced. 4G supports a range of applications, including enhanced mobile internet access, high-definition streaming, IP telephony, video conferencing, and the expansion of Internet of Things (IoT) applications.
Orthogonal frequency-division multiple access (OFDMA) is a multi-user version of the popular orthogonal frequency-division multiplexing (OFDM) digital modulation scheme. Multiple access is achieved in OFDMA by assigning subsets of subcarriers to individual users. This allows simultaneous low-data-rate transmission from several users.
Multimedia Broadcast Multicast Services (MBMS) is a point-to-multipoint interface specification for existing 3GPP cellular networks, which is designed to provide efficient delivery of broadcast and multicast services, both within a cell as well as within the core network. For broadcast transmission across multiple cells, it defines transmission via single-frequency network configurations. The specification is referred to as Evolved Multimedia Broadcast Multicast Services (eMBMS) when transmissions are delivered through an LTE network. eMBMS is also known as LTE Broadcast.
Mobile television is television watched on a small handheld or mobile device, typically developed for that purpose. It includes service delivered via mobile phone networks, received free-to-air via terrestrial television stations, or via satellite broadcast. Regular broadcast standards or special mobile TV transmission formats can be used. Additional features include downloading TV programs and podcasts from the Internet and storing programming for later viewing.
Mobile broadband is the marketing term for wireless Internet access via mobile (cell) networks. Access to the network can be made through a portable modem, wireless modem, or a tablet/smartphone or other mobile device. The first wireless Internet access became available in 1991 as part of the second generation (2G) of mobile phone technology. Higher speeds became available in 2001 and 2006 as part of the third (3G) and fourth (4G) generations. In 2011, 90% of the world's population lived in areas with 2G coverage, while 45% lived in areas with 2G and 3G coverage. Mobile broadband uses the spectrum of 225 MHz to 3700 MHz.
One Hungary is a mobile operator in Hungary whose predecessor was the Vodafone Hungary until 1 January 2025. It started operations in 1999 after securing the third GSM 900/1800 MHz licence of the country and it was the first provider operating in the DCS-1800 band in Hungary. One is the second largest mobile network operator of the country. The operator had a share of ~27% of the market in Q2 2020. They controlled approx. 29% of the market in 2024Q2. Market share The full report about the number of subscribers is available on the company website.
LTE Advanced is a mobile communication standard and a major enhancement of the Long Term Evolution (LTE) standard. It was formally submitted as a candidate 4G to ITU-T in late 2009 as meeting the requirements of the IMT-Advanced standard, and was standardized by the 3rd Generation Partnership Project (3GPP) in March 2011 as 3GPP Release 10.
In telecommunications, long-term evolution (LTE) is a standard for wireless broadband communication for mobile devices and data terminals based on the GSM/EDGE and UMTS/HSPA standards. It improves on those standards' capacity and speed by using a different radio interface and core network improvements. LTE is the upgrade path for carriers with both GSM/UMTS networks and CDMA2000 networks. Because LTE frequencies and bands differ from country to country, only multi-band phones can use LTE in all countries where it is supported.
International Mobile Telecommunications-Advanced are the requirements issued by the ITU Radiocommunication Sector (ITU-R) of the International Telecommunication Union (ITU) in 2008 for what is marketed as 4G mobile phone and Internet access service.
In telecommunications, 5G is the fifth generation of cellular network technology, which mobile operators began deploying worldwide in 2019 as the successor to 4G. 5G is based on standards defined by the International Telecommunication Union (ITU) under the IMT-2020 requirements, which outline performance targets for speed, latency, and connectivity to support advanced use cases.
The Next Generation Mobile Networks (NGMN) Alliance is a mobile telecommunications association of mobile operators, vendors, manufacturers and research institutes. It was founded by major mobile operators in 2006 as an open forum to evaluate candidate technologies to develop a common view of solutions for the next evolution of wireless networks. Its objective is to ensure the successful commercial launch of future mobile broadband networks through a roadmap for technology and friendly user trials. Its office is in Frankfurt, Germany.
ATSC 3.0 is a major version of the ATSC standards for terrestrial television broadcasting created by the Advanced Television Systems Committee (ATSC).
SmarTone Telecommunications Holdings Limited (0315.HK), listed in Hong Kong since 1996 and a subsidiary of Sun Hung Kai Properties Limited, is a leading telecommunications provider with operating subsidiaries in Hong Kong, offering voice, multimedia and mobile broadband services, as well as fixed fibre broadband services for both consumer and corporate markets. SmarTone spearheaded 5G development in Hong Kong since May 2020, with the launch of its territory-wide 5G services. SmarTone is also the first in Hong Kong to launch Home 5G Broadband service.
5G NR is a radio access technology (RAT) developed by the 3rd Generation Partnership Project (3GPP) for the 5G mobile network. It was designed to be the global standard for the air interface of 5G networks. It is based on orthogonal frequency-division multiplexing (OFDM), as is the 4G long-term evolution (LTE) standard.
Abhay Karandikar is an Indian educator, engineer, innovator, and administrator best known for his work in the telecommunication sector in India. Currently, he is serving as the Secretary to the Government of India in the Department of Science and Technology, Government of India from 1 October 2023 onwards. Previously, he served as the Director of Indian Institute of Technology, Kanpur from 1 April 2018 to 30 September 2023. Prior to that, Karandikar held a number of positions, including Dean, Head of the Department of the Electrical Engineering, and Institute Chair Professor at the Indian Institute of Technology, Bombay. He was one of the founding members of Telecom Standards Development Society of India and appointed as its first Vice Chairman from 2014 to 2016, and then was appointed its Chairman from 2016 to 2018. Karandikar contributed to conceptualization and establishment of new technical standards work programmes for TSDSI. In 2016, he was awarded with IEEE SA's Standards Medallion for his work to Indian Technology, Policy and Standardization with IEEE guidelines.
Voice over New Radio or Voice over 5G is a high-speed wireless communication standard for voice services over 5G networks, utilizing mobile phones, data terminals, IoT devices, and wearables. Like 4G networks, 5G do not natively support voice calls traditionally carried over circuit-switched technology. Instead, voice communication is transmitted over the IP network, similar to IPTV services. To address this, Voice over NR (VoNR) is implemented, allowing voice calls to be carried over the 5G network using the same packet-switched infrastructure as other IP-based services, such as video streaming and messaging.
{{cite web}}
: CS1 maint: numeric names: authors list (link)